2.3.7.1. Методы, основанные на использовании наблюдателей
Основная идея данной группы методов формирования рассогласования состоит в оценке выходов системы по измерениям с использованием наблюдателей Люненбергера в детерминированной среде или фильтров Калмана в стохастической среде. Затем в качестве рассогласования используется (взвешенная) ошибка оценки выхода или порожденная случайная величина в стохастическом случае. Данный метод будет рассмотрен подробнее применительно к наблюдателям состояния и наблюдателям при неизвестном входе далее в пункте 2.11.
2.3.7.2. Методы, основанные на оценке параметров
Диагностика отказов с использованием моделей может быть так же выполнена с использованием техник идентификации. Этот метод основан на предположении о том, что отказы являются отражением физических параметров системы таких как сила трения, масса, внутреннее трение, сопротивление, индуктивность, емкость и т.д. основная идея метода выявления отказов заключается в том, что параметры реального процесса оцениваются on-line с использованием широко известных методов оценки параметров. Результаты оценки сравниваются с параметрами эталонной модели, определенной при отсутствии отказов. Любое значительное отличие означает отказ. В этом методе обычно используется математическая модель вход-выход системы в следующей форме:
y(t) = f(P, u(t)), (2.33)
где P – вектор коэффициентов модели, непосредственное связанный с физическими параметрами системы. Функция f может быть как линейной так и нелинейной.
Основные этапы диагностика отказов, основанной на оценке параметров таковы:
установить модель процесса с использованием физических отношений;
определить взаимосвязи между коэффициентами модели и физическими параметрами процесса;
оценить нормальные коэффициенты модели;
вычислить нормальные физические параметры процесса;
определить изменения параметров для различных отказов.
При завершении последнего шага может быть построена база данных отказов и их признаков (симптомов). Во время работы системы периодически необходимо выполнять идентификацию коэффициентов модели системы по измеряемым входам и выходам и сравнивать с нормальными параметрами модели и параметрами с отказами.
Чтобы выполнить генерацию рассогласования в соответствии с этим методом, должен быть использован on-lineалгоритм идентификации параметров. Если мы имеем оценку параметров модели на k-1 шаге P’k-1, рассогласование можно определить следующим образом:
(2.34)где Р0 – коэффициенты нормальной модели.
Выполнить изоляцию отказов с помощью оценки параметров достаточно трудно. Причиной этого является то, что идентифицированные параметры являются параметрами модели, которые не всегда могут быть преобразованы в физические параметры системы. Тем не менее, отказы представляются вариациями физических параметров.
2.3.8. Формирование рассогласований на основе наблюдателей состояния
Чтобы определить структуру наблюдателя, рассмотрим стационарную линейную динамическую модель исследуемого процесса:
(2.35)где
, , .При предположении, что все матрицы А, В и С точно известны, для воссоздания переменных системы на основе измерений входов и выходов используется наблюдатель состояния:
(2.36)Схема наблюдателя, описываемого уравнением 2.36 изображена на рисунке 2.16.
Из уравнения 2.36 следует, что оценка ошибки состояния eх(t):
(2.37)Рис. 2.16. Система и наблюдатель состояния
Ошибка оценки состояния eх(t) (и ошибка e(t)) асимптотически уменьшается:
(2.38)если наблюдатель устойчив. Обеспечение устойчивости наблюдателя достигается выбором матрицы обратной связи Н.
Система, на которую воздействуют отказы, как было показано ранее (пункт 2.4.), описывается следующим образом:
(2.39)Здесь f(t) – сигналы отказа на входе и выходе, действующие через матрицы
и соответственно. Они могут представлять аддитивные отказы исполнительного механизма, процесса, входных и выходных датчиков.Для ошибки оценки состояния выполняются следующие уравнения:
, (2.40)тогда выходная ошибка примет вид:
. (2.41)Вектор f (t), в этом случае, представляет аддитивные отказы, так как они добавляются к e(t) и x(t).
Как видно из уравнения (2.40), при соответствующем выборе параметров матрицы обратной связи наблюдателя Н ошибка оценки состояния при отсутствии отказов асимптотически уменьшается (см. 2.39), а в случае появления внезапных или зарождающихся сигналов отказов f(t) ошибка оценки состояния будет отличаться от нуля. Ошибка оценки выхода e(t), определяемая по формуле (2.41) при возникновении отказов так же будет отлична от нуля.
Ошибки
и могут быть использованы как рассогласования. В частности, рассогласование является основой различных методов обнаружения отказов, использующих оценку выхода.Рис. 2.17. Система с отказами
Если входные и выходные сигналы системы так же подвержены воздействию шума, то вместо классических наблюдателей используются фильтры Калмана.
Если отказы рассматриваются как изменения параметров
или , то поведение системы становится: (2.42)а ошибки
и : (2.43)Изменения параметров
и представляют собой мультипликативные отказы.В этом случае, изменения в рассогласованиях зависят от изменений параметров, так же как и изменения входа и переменных состояния. Следовательно, влияние изменения параметров на рассогласование не такое простое, как в случае аддитивных отказов f(t).
Наблюдатели состояния могут быть использованы для изоляции отказов, при проектировании групп рассогласований или направлений вектора рассогласований. Для отказов датчиков, спроектировать группу рассогласований очень просто. Если нам необходимо сформировать рассогласование чувствительное ко всем отказам датчиков за исключением одного, то наблюдатель формирующий это рассогласование должен возбуждаться всеми выходами за исключением одного. Однако, проектировать группы рассогласований для изоляции отказов исполнительных механизмов труднее. Эта проблема может быть решена с помощью наблюдателей при неизвестном входе и метода распределения собственных чисел. Тем не менее, изоляция отказов исполнительных механизмов не всегда возможна и в этом случае. Фиксирование направления вектора рассогласования может быть выполнено с использованием фильтров выявления отказов.
2.3.9. Формирование рассогласований, не чувствительных к возмущениям и ошибкам линеаризации
Надежность системы диагностики отказов должна быть выше, чем надежность системы, за которой осуществляется мониторинг. Диагностика отказов, основанная на моделях, использует математические модели рассматриваемой системы. Лучшие модели используется для представления динамики системы, при этом случайно улучшая показатели надежности при диагностике отказов. Тем не менее, ошибки моделирования и возмущения в сложных инженерных системах неизбежны, и, следовательно, существует необходимость в создании надежных алгоритмов диагностики отказов. Надежность системы диагностики отказов означает, что эта система должна быть чувствительна только к отказам, даже при наличии отличий модели от реальности (т.е. вариаций параметров и т.д.) Обычно, воздействие вариаций параметров и возмущений на реальный процесс неизвестно, поэтому достаточно трудно спроектировать систему диагностики, которая обладала бы высокой чувствительностью к отказам и при этом была бы не чувствительна к неопределенностям и не моделируемым возмущениям.