Основа диагностики отказов с использованием моделей – формирование рассогласований. Воздействие отказов и неопределенностей на рассогласование различить достаточно трудно. Следовательно, задачей проектирования надежных систем диагностики является формировании рассогласований, нечувствительных к неопределенностям и, в то же время, чувствительных к отказам, и, следовательно надежных.
Чтобы обобщить проблему надежности, рассмотрим модель системы, содержащую все виды моделируемых неопределенностей, возникающих на практике и воздействующих на поведение системы:
(2.45)где d(t) - вектор неизвестного входа (возмущений), матрицы возмущений Е1 и Е2 принимаются известными. Матрицы ∆А, ∆В, ∆С и ∆D – ошибка параметров или вариации, представляющие ошибки моделирования. В этом случае описание системы в форме передаточной функции имеет вид:
. (2.46)где Gd(s)d(s) – представляют эффект возмущений:
, (2.47)∆Gu(s) используется для описания ошибок моделирования. Составляющие Gd(s)d(s) и ∆Gu(s) вместе представляют моделируемые неопределенности. Если подставить выход системы в уравнение формирования рассогласования (2.11), то получим:
. (2.48)Из этого уравнения видно, что и отказы и неопределенности (возмущения и ошибки моделирования) воздействуют на рассогласование, и, поэтому различить их воздействие трудно.
Если рассогласование формируется удовлетворяющим уравнению:
, (2.49)т.е. возмущения отделены от рассогласования, то рассогласование устойчиво к возмущению. Это – принцип отделения возмущений для формирования надежного рассогласования.
Для ошибок моделирования, представляемых ∆Gu(s), проблема надежности является более сложной. Было предложено два основных способа ее решения. Первый основан на попытке рассмотрения неопределенностей при проектировании рассогласований. Этот метод известен как активная надежность при диагностике. Второй метод называется пассивная надежность при диагностике. Этот метод предполагает использование адаптивного порога на стадии принятия решения.
2.4. Наблюдатели при неизвестном входе
Формирование надежных рассогласований является наиболее важной задачей в методах диагностики отказов, основанной на моделях. Методы отделения возмущений – основные методы, позволяющие решить данную задачу. В этих методах, неопределенные факторы моделирования системы рассматриваются как воздействие на неизвестный вход (или возмущения) модели линейной системы. Не смотря на то, что неизвестный входной вектор неизвестен, его матрица распределения принимается известной. На основе информации о матрице распределения, неизвестный вход (возмущение) может быть отделено от рассогласования. Надежная диагностика отказов, следовательно, выполняется с использование отделения рассогласований от возмущений. Проблема формирования надежного рассогласования может быть решена с использованием наблюдателя с неизвестным входом. В этом случае, рассогласование может быть так же отделено от каждого возмущения, так как рассогласование определяется как взвешенная ошибка оценки выхода.
Основными требованиями для наблюдателей при неизвестном входе или для других методов формирования надежного рассогласования является то, что матрица распределения неизвестного входа должна быть априорно известна, благодаря чему не нужно знать сам неизвестный вход. Если неопределенности вызваны возмущениями, то удовлетворить это требование достаточно легко и задача надежной диагностики отказов решается так же легко. Тем не менее, метод отделения возмущений не может быть прямо применен к системе, в которой неопределенности вызваны ошибками моделирования, ошибками линеаризации, вариациями параметров и т.д. Причиной этого является то, что матрица распределения возмущений обычно в этих случаях не известна. Эта проблема затрудняет использование этих надежных методов в диагностике отказов применительно к реальным промышленным системам. Для решения этой проблемы, некоторые исследователи советуют использовать метод оценки матрицы распределения.
2.4.1. Проектирование наблюдателей при неизвестном входе
Будем рассматривать такой класс систем, в котором неопределенности системы могут быть представлены в качестве неизвестной аддитивной составляющей, а динамические уравнения имеют такой вид:
(2.50)где
- вектор состояния, - известный вектор входа, - вектор выхода и - вектор неизвестного входа (или возмущения). A,B,C - известные матрицы соответствующих размерностей.Составляющая Ed(t) может быть использована для описания как аддитивных возмущений так и для других видов моделируемых неопределенностей. Например, шума, составляющих связей в крупномасштабных системах, нелинейных составляющих в динамике системы, составляющих, возникающих из-за изменения во времени динамики системы, ошибок линеаризации и ошибок понижения порядка модели, вариаций параметров.
Определение 2.1. Наблюдатель называется наблюдателем при неизвестном входедля системы, описываемой уравнением (2.50), если вектор ошибки оценки состояния ex(t) асимптотически стремится к нулю, не смотря на наличие неизвестного входа (возмущения) в системе.
Структура наблюдателя полного порядка может быть представлена следующим образом:
(2.52)где
- оцениваемый вектор состояния, а - вектор состояния этого наблюдателя полного порядка, F, T, K, H – матрицы, которые необходимо спроектировать для выполнения отделения неизвестного входа и других требований проектирования. Наблюдатель, описываемый уравнениями (2.52) представлен на рисунке 2.18.Когда наблюдатель (2.52) проектируется для системы (2.51) ошибка оценки (ex(t) =
- ) удовлетворяет уравнению: (2.53)где К=К1+К2. (2.54)
Рис. 2.18. Структура наблюдателя при неизвестном входе полного порядка
Если выполняются следующие равенства:
, (2.55) , (2.56) , (2.57) , (2.58)то ошибка оценки будет:
. (2.59)Если все собственные числа Fустойчивы, ex(t) будет асимптотически стремиться к нулю, т.е.
Это означает, что наблюдатель (2.52), в соответствии с определением 2.1, является наблюдателем при неизвестном входе для системы (2.51). Проектирование этого наблюдателя заключается в решении уравнений (2.54)-(2.58) и выборе матрицы F так, чтобы все ее собственные числа были устойчивы.Теорема 2.1. Необходимыми и достаточными условиями существования наблюдателя (3.2) при неизвестном входе для системы описываемой уравнением (4.51) является:
1. ранг (CE) = ранг (E),
2. ( А1, С) является обнаруживаемой парой где
А1 = А – Е(СЕ)+СА. (2.62)
Стоит заметить, что для удовлетворения условия (1) теоремы 2.1 число независимых строк в матрице С должно быть меньше чем число независимых столбцов матрицы Е. Это означает, что максимальное количество возмущений, которые могут быть отделены не может быть больше чем число независимых измерений.
Кроме того, без неизвестных входов в системе, при установке T=I, H=0 и Е=0, наблюдатель (2.52) будет простым наблюдателем Люненбергера. В этом случае, условие (1) Теоремы 2.1 выполняется в любом случае, а условие (2) сводится к условию обнаруживаемости пары (А,С). Это – хорошо известный результат проектирования наблюдателя Люненбергера полного порядка.
Можно показать, что при проектировании наблюдателей при неизвестном входе К1 является матрицей свободных параметров. После вычисления К1для того, чтобы обеспечить устойчивость матрицы динамической системы F, другие параметры матриц наблюдателя могут быть вычислены из соотношения К = К1+ К2и условий (2.55)-(2.58). Некоторая свобода проектирования допускаемая при выборе К1может быть использована, чтобы придать рассогласования необходимые проектировщику характеристики.