Как было показано ранее, математическая формулировка динамических задач оптимального управления сводится к следующему. Имеется объект управления, состояние которого характеризуется многомерной переменной х={х1,…,xn}. Характер процессов в объекте управления можно изменять, используя то или иное упвление u из пространства допустимых правлений U. В общем случае управление u
U может быть также многомерной величиной u={u1,...,um}. Характер движения объекта управления описывается системой дифференциальных уравнений х=g (х, u), х (0)=с.За критерий качества управления принимается интегральная оценка вида
J(u)=
,имеющая физический смысл потерь, где Т- время протекания процесса управления, aQ[x(t), u(t)]=q(t) - мгновенные потери в момент t при состоянии системы x(t) и управлении u(t). Добавочными ограничениями могут быть ограничения, накладываемые на количество ресурсов или пределы изменения некоторых параметров, выражающиеся математически соотношением .Как было установлено ранее, оптимальным называется такое управление u* из множества допустимых управлений U, при котором для объекта, описываемого дифференциальным уравнением, и заданных ограничениях на используемые ресурсы критерий качества управления принимает минимальное (максимальное) значение.
Сформулированная подобным образом задача оптимального управления относится к классу вариационных задач, решением которых занимается раздел математики, получивший название вариационного исчисления. Величина J(u) получила название функционала. В отличие от функции, например, f(x), численные значения которой задаются на множестве значений аргумента х, численные значения функционала J(u) задаются на множестве всевозможных управлений u(t). Задача нахождения оптимального управления сводится к тому, чтобы из множества допустимых управлений U выбрать такое, при котором функционал J(t) принимает минимальное численное значение.
Обычно задачи, требующие минимизации функционала, подчиненного дифференциальному соотношению, при наличии интегрального ограничения заменяются минимизацией нового функционала
J(u)=
+ λ ,подчиненного только дифференциальному соотношению. Параметр λ, в функционале, получивший название множителя Лагранжа, в задачах оптимизации управления играет роль «цены» ограниченных ресурсов. Его значение находится из граничных условий вариационной задачи.
Возможность упрощения вариационной задачи с интегральными ограничениями посредством введения множителей Лагранжа вытекает из следующей теоремы.
Теорема 1. Если u(t)-оптимальное управление, при котором функционал J(u)=
+λ достигает абсолютного минимума и выполняется ограничение , тогда при u(t) достигается абсолютный минимум функционала J(u)= , подчиненного ограничению .Доказательство: следует от противного. Пусть v(t)-другое управление, отличное от u(t), причем такое, что
<и выполнено условие
.Тогда
+λ ≤ +λK< +λK==
+λ , что противоречит предположению, что u(t) обращает J(u)= +λ в минимум.Важнейшим понятием вариационного исчисления является понятие вариации функции, которое при исследовании функционалов играет такую же роль, как дифференциал при исследовании функций.
Пусть f(x) – функция, непрерывная на интервале [a,b]. Рассмотрим внутреннюю точку х этого интервала и некоторое фиксированное значение дифференциала аргумента функции ∆x=dx. Разность f(x+∆x)-f(x)=df(x)=f(x)∆x называется дифференциалом функции f(x) в точке х. Как известно, условие df(x)=0 является необходимым условием минимума (максимума) функции f(x) в точке х.
Получим аналогичные соотношения в вариационноми исчислении.
Рассмотрим задачу с закреплёнными концами при фиксированном времени.
Пусть задана некоторая целевая функция
J=
-min, при условиях x(t0)=x0 , x(tf)=xf , t [t0,tf], x(t) Rn, причём x(t) непрерывна, и дифференцируема.Пусть у нас имеется оптимальное решение x(t)=x*(t).
Проведём сдвиг от этого решения: выберем произвольную функцию η(t), такую, что η(t0)=η(tf)=0, η(t)
Rn ,причём η(t) непрерывна, и дифференцируема.Таким образов выражение εη(t) есть не что иное, как ∆x для функции f(x), εη(t) называется вариацией функционала.
При фиксированных x(t) и η(t), наша целевая функция буде функцией от ε:
J(ε)=
-min,Решение этого уравнение известно, т.к. это будет достигаться при ε=0,x(t)=x*(t).
Разложим функцию J(ε) в ряд Тейлора в точке ε=0n:
J(ε)=J(0n)+
J(ε)ε + 2J(ε)ε2 + o(∆x).Необходимое условие минимума J(ε)-J(0n) ≥0, тогда получим
J(ε)-J(0n)=
J(ε)ε + 2J(ε)ε2 + o(∆x) ≥0.Для того, чтобы неравенство выполнялось первое слагаемое должно равняттся нулю (т.к. оно может принимать как положительные, так и отрицательные значения):
J(ε)=δJ=0 – I необходимое условие экстремума функционала.Если это условие выполняется, то получим
J(ε)-J(0n)=
2J(ε)ε2 + o(∆x) ≥0,отбросим члены малости больше 2.
2J(ε)= δ2 J ( ≥ 0, ≤ 0)– второе необходимое условие экстремума функционала.
В вариационном исчислении условие δJ=0 используется для получения так называемого дифференциального уравнения Эйлера, среди множества решений которого и определяется затем управление u(t), обращающее в минимум функционал.
Применим выше изложенные рассуждения для вывода дифференциального уравнения Эйлера.
Воспользуемся I необходимое условие экстремума функционала
J(ε)=δJ=0.δJ=
J(ε)= = ==
= + =| 2-й интеграл по частям |==
+ – = ≡ 0.