Смекни!
smekni.com

Защита персональных данных с помощью алгоритмов шифрования (стр. 2 из 5)

В 1949 году статья Клода Шеннона "Теория связи в секретных системах" положила начало научной криптологии. Шеннон показал, что для некоторого "случайного шифра" количество знаков шифротекста, получив которые криптоаналитик при неограниченных ресурсах может восстановить ключ (и раскрыть шифр),


H (Z)/(rlog N), (2)

где H (Z) - энтропия ключа, r - избыточность открытого текста, а N - объем алфавита. По эффективности, с которой архиваторы сжимают текстовые файлы, нам хорошо известно, как велика избыточность обычного текста - ведь их работа и состоит в снижении избыточности (причем только на наиболее легко устраняемой ее части). При избыточности обычного текста порядка 0,75 и использовании 56-битового ключа (такого, как предполагает DES), достаточно 11 символов шифротекста для восстановления ключа при неограниченных ресурсах криптоаналитика.

Строго говоря, соотношение (2) не доказано для произвольного шифра, но верно для известных частных случаев. Из (2) следует замечательный вывод: работу криптоаналитика можно затруднить не только совершенствованием криптосистемы, но и снижением избыточности открытого текста. Более того, если избыточность открытого текста снизить до нуля, то даже короткий ключ даст шифр, который криптоаналитик не сможет раскрыть.

Перед шифрованием информацию следует подвергнуть статистическому кодированию (сжатию, архивации). При этом уменьшится объем информации и ее избыточность, повысится энтропия (среднее количество информации, приходящееся на один символ). Так как в сжатом тексте будут отсутствовать повторяющиеся буквы и слова, дешифрование (криптоанализ) затруднится.

1.4 Классификация алгоритмов шифрования

1. Симметричные (с секретным, единым ключом, одноключевые, single-key).

1.1. Потоковые (шифрование потока данных):

· с одноразовым или бесконечным ключом (infinite-key cipher);

· с конечным ключом (система Вернама - Vernam);

· на основе генератора псевдослучайных чисел (ПСЧ).

1.2. Блочные (шифрование данных поблочно):

1.2.1. Шифры перестановки (permutation, P-блоки);

1.2.2. Шифры замены (подстановки, substitution, S-блоки):

· моноалфавитные (код Цезаря);

· полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma);

2. Асимметричные (с открытым ключом, public-key):

· Диффи-Хеллман DH (Diffie, Hellman);

· Райвест-Шамир-Адлeман RSA (Rivest, Shamir, Adleman);

· Эль-Гамаль (ElGamal).

Кроме того, есть разделение алгоритмов шифрования на собственно шифры (ciphers) и коды (codes). Шифры работают с отдельными битами, буквами, символами. Коды оперируют лингвистическими элементами (слоги, слова, фразы).


Глава II. Рассмотрение алгоритмов

2.1 Симметричные алгоритмы шифрования

Симметричные алгоритмы шифрования (или криптография с секретными ключами) основаны на том, что отправитель и получатель информации используют один и тот же ключ. Этот ключ должен храниться в тайне и передаваться способом, исключающим его перехват.

Обмен информацией осуществляется в 3 этапа:

· отправитель передает получателю ключ (в случае сети с несколькими абонентами у каждой пары абонентов должен быть свой ключ, отличный от ключей других пар);

· отправитель, используя ключ, зашифровывает сообщение, которое пересылается получателю;

· получатель получает сообщение и расшифровывает его.

Если для каждого дня и для каждого сеанса связи будет использоваться уникальный ключ, это повысит защищенность системы.

2.1.1 Потоковые шифры

В потоковых шифрах, т. е. при шифровании потока данных, каждый бит исходной информации шифруется независимо от других с помощью гаммирования.

Гаммирование - наложение на открытые данные гаммы шифра (случайной или псевдослучайной последовательности единиц и нулей) по определенному правилу. Обычно используется "исключающее ИЛИ", называемое также сложением по модулю 2 и реализуемое в ассемблерных программах командой XOR. Для расшифровывания та же гамма накладывается на зашифрованные данные.

При однократном использовании случайной гаммы одинакового размера с зашифровываемыми данными взлом кода невозможен (так называемые криптосистемы с одноразовым или бесконечным ключом). В данном случае "бесконечный" означает, что гамма не повторяется.

В некоторых потоковых шифрах ключ короче сообщения. Так, в системе Вернама для телеграфа используется бумажное кольцо, содержащее гамму. Конечно, стойкость такого шифра не идеальна.

Понятно, что обмен ключами размером с шифруемую информацию не всегда уместен. Поэтому чаще используют гамму, получаемую с помощью генератора псевдослучайных чисел (ПСЧ). В этом случае ключ - порождающее число (начальное значение, вектор инициализации, initializing value, IV) для запуска генератора ПСЧ. Каждый генератор ПСЧ имеет период, после которого генерируемая последовательность повторяется. Очевидно, что период псевдослучайной гаммы должен превышать длину шифруемой информации.

Генератор ПСЧ считается корректным, если наблюдение фрагментов его выхода не позволяет восстановить пропущенные части или всю последовательность при известном алгоритме, но неизвестном начальном значении.

При использовании генератора ПСЧ возможны несколько вариантов

1. Побитовое шифрование потока данных. Цифровой ключ используется в качестве начального значения генератора ПСЧ, а выходной поток битов суммируется по модулю 2 с исходной информацией. В таких системах отсутствует свойство распространения ошибок.

2. Побитовое шифрование потока данных с обратной связью (ОС) по шифртексту. Такая система аналогична предыдущей, за исключением того, что шифртекст возвращается в качестве параметра в генератор ПСЧ. Характерно свойство распространения ошибок. Область распространения ошибки зависит от структуры генератора ПСЧ.

3. Побитовое шифрование потока данных с ОС по исходному тексту. Базой генератора ПСЧ является исходная информация. Характерно свойство неограниченного распространения ошибки.

4. Побитовое шифрование потока данных с ОС по шифртексту и по исходному тексту.

2.1.2 Блочные шифры

При блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов:

· шифрыперестановки (transposition, permutation, P-блоки);

· шифры замены (подстановки, substitution, S-блоки).

Шифры перестановок переставляют элементы открытых данных (биты, буквы, символы) в некотором новом порядке. Различают шифры горизонтальной, вертикальной, двойной перестановки, решетки, лабиринты, лозунговые и др.

Шифры замены заменяют элементы открытых данных на другие элементы по определенному правилу. Paзличают шифры простой, сложной, парной замены, буквенно-слоговое шифрование и шифры колонной замены. Шифры замены делятся на две группы:

· моноалфавитные (код Цезаря);

· полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma).

В моноалфавитных шифрах замены буква исходного текста заменяется на другую, заранее определенную букву. Например в коде Цезаря буква заменяется на букву, отстоящую от нее в латинском алфавите на некоторое число позиций. Очевидно, что такой шифр взламывается совсем просто. Нужно подсчитать, как часто встречаются буквы в зашифрованном тексте, и сопоставить результат с известной для каждого языка частотой встречаемости букв.

В полиалфавитных подстановках для замены некоторого символа исходного сообщения в каждом случае его появления последовательно используются различные символы из некоторого набора. Понятно, что этот набор не бесконечен, через какое-то количество символов его нужно использовать снова. В этом слабость чисто полиалфавитных шифров.

В современных криптографических системах, как правило, используют оба способа шифрования (замены и перестановки). Такой шифратор называют составным (product cipher). Oн более стойкий, чем шифратор, использующий только замены или перестановки.

2.2 Асимметричные алгоритмы шифрования

В асимметричных алгоритмах шифрования (или криптографии с открытым ключом) для зашифровывания информации используют один ключ (открытый), а для расшифровывания - другой (секретный). Эти ключи различны и не могут быть получены один из другого.

Схема обмена информацией такова:

· получатель вычисляет открытый и секретный ключи, секретный ключ хранит в тайне, открытый же делает доступным (сообщает отправителю, группе пользователей сети, публикует);

· отправитель, используя открытый ключ получателя, зашифровывает сообщение, которое пересылается получателю;

· получатель получает сообщение и расшифровывает его, используя свой секретный ключ.

2.2.1 Алгоритм Диффи-Хелмана

Алгоритм Диффи-Хелмана (Whitfield Diffie и Martin Hellman, 1976 год) использует функцию дискретного возведения в степень и похож на метод Эль-Гамаля.

Сначала генерируются два больших простых числа n и q. Эти два числа не обязательно хранить в секрете. Далее один из партнеров P1 генерирует случайное число x и посылает другому участнику будущих обменов P2 значение A = qx mod n

По получении А партнер P2 генерирует случайное число у и посылает P2 вычисленное значение B = qy mod n

Партнер P1, получив В, вычисляет Kx = Bx mod n, а партнер P2 вычисляет Ky = Ay mod n. Алгоритм гарантирует, что числа Ky и Kxравны и могут быть использованы в качестве секретного ключа для шифрования. Ведь даже перехватив числа А и В, трудно вычислить Kx или Ky.