Смекни!
smekni.com

Надежность программного обеспечения (стр. 2 из 3)

На интуитивном уровне понятие надежности программы отражает тот факт, что она не всегда может давать правильный результат. Это означает, что надежность программы является характеристикой ее исполняемого кода. Исполняемый код соотносится с исходным текстом так же, как, например, электродвигатель и его чертежи: можно говорить о надежности изготовленного изделия, но бессмысленно говорить о надежности описания, чертежа, текста. Две функционально идентичные программы, написанные на разных языках, или подготовленные для разных типов машин, или для одной и той же машины, но с использованием разных компиляторов, с точки зрения надежности следует считать разными.

Надежность и правильность программы

Программа считается правильной, если она не содержит ошибок. Такая программа не дает неверных результатов, т.е. она абсолютно надежна. Этот факт породил ложное представление о том, что число ошибок в программе можно считать наиболее естественной мерой надежности ([1]). Было выполнено довольно много работ, в которых предлагались различные методы оценки числа оставшихся в программе ошибок по результатам ее тестирования, в том числе метод "засорения" известными ошибками, однако, как показывают приводимые ниже соображения, количество ошибок в программе не имеет никакого отношения к ее надежности:

1. Число ошибок в программе - величина "ненаблюдаемая", наблюдаются не сами ошибки, а результат их проявления.

2. Неверное срабатывание программы может быть следствием не одной, а сразу нескольких ошибок.

3. Ошибки могут компенсировать друг друга, так что после исправления какой-то одной ошибки программа может начать "работать хуже".

4. Надежность характеризует частоту проявления ошибок, но не их количество; в то же время хорошо известно, что ошибки проявляются с разной частотой: некоторые ошибки остаются невыявленными после многих месяцев и даже лет эксплуатации, но, с другой стороны, нетрудно привести примеры, когда одна единственная ошибка приводит к неверному срабатыванию программы при любых исходных данных, т.е. к нулевой надежности.

Следует также отметить, что если число ошибок рассматривать как меру надежности, то в терминологии теории вероятностей это число есть случайная величина, однако самый главный вопрос - на каком пространстве элементарных событий она задана - нигде не затрагивался.

Наконец, важно подчеркнуть, что, с точки зрения надежности, в результате исправления ошибки или любой другой коррекции получается новая программа с другим, чем до коррекции, показателем надежности.

Таким образом, число ошибок в программе характеризует скорее не программу, а ее изготовителей и используемый инструментарий.

Модель последовательности испытаний Бернулли

Рассмотрим для простоты класс программ, имеющих единственный вход и выход, т.е. не содержащих бесконечных циклов. Фазу выполнения программы от начала до завершения будем называть запуском. Все возможные результаты запуска разобьем на два класса: правильные и неправильные (ошибочные). Будем считать, что любой результат всегда можно отнести к одному из этих классов. (Ясно, что по этому вопросу возможны разногласия между изготовителями программы и пользователями, однако будем предполагать, что имеется какой-то общий критерий, например, "клиент всегда прав".) Рассмотрим классическую вероятностную модель последовательности испытаний Бернулли. Пространство элементарных событий в этой модели содержит 2n точек, где n - число испытаний (в данном случае под испытанием подразумевается запуск программы). Каждый запуск программы имеет два исхода: правильный и неправильный. Обозначим вероятность неправильного исхода р, а вероятность правильного - (1-p). Вероятность того, что из n запусков К приведут к неправильному результату, выражается хорошо известной формулой биномиального распределения ([4]).

B(р,n,k) = C(n,k) * pk * (1-р)(n-k), (1)

где С(n,k) - число сочетаний. Вероятность р априори неизвестна, но по результатам запусков известны n и k. Величина В как функция р имеет максимум при

р = k/n. (2)

В качестве меры надежности программы можно принять величину

R = 1 - k/n = (n-k)/n, (3)

значения которой (от 0 до 1) согласуются с общепринятым смыслом термина надежность: например, если все запуски окончились с ошибочным результатом (k = n), то надежность - нулевая.

Наиболее существенное предположение в данной модели состоит в том, что запуски программы считаются независимыми. Это означает, что результаты предыдущих запусков не дают никакой информации о результатах следующего. Ясно, что это предположение на практике выполняется не всегда: например, повторный запуск с теми же входными данными даст, очевидно, тот же самый результат.

Следует отметить, что изготовитель программы и ее пользователь располагают разной информацией о ней. Например, изготовителю заведомо известна логика программы, так что по результатам запуска с некоторыми исходными данными он иногда может точно предсказать результаты запусков с другими исходными данными (на этом, в конечном счете, основана любая методика тестирования), и в этом смысле предположение о независимости испытаний не выполняется. Однако пользователя редко интересует устройство программы, для него важно лишь одно: выполняет ли она требуемые функции, поэтому у пользователя нет оснований считать запуски зависимыми. Если же имеется желание использовать информацию об устройстве программы при оценке ее надежности, то следует придумать какую-то более сложную вероятностную модель, которая бы ее учитывала.

Некоторые следствия

Формула (3) позволяет оценить надежность программы по результатам ее запусков. Следует особо остановиться на двух предельных случаях: k = n (нулевая надежность) и k = 0 (абсолютная надежность). В обоих случаях результаты не следует интерпретировать буквально: нет никаких гарантий того, что очередной запуск приведет к тому же реультату, что и предыдущие. Однако с точки зрения пользователя эти случаи совершенно разные. Если нулевая надежность свидетельствует о том, что программа явно непригодна для эксплуатации, то показатель абсолютной надежности не должен вводить в заблуждение: такой вывод нельзя делать по результатам даже очень большого числа запусков. Следует подчеркнуть, что для оценки надежности в этом случае необходимо рассмотреть другие вероятностные модели.

Из формулы (3) следует, что оценка надежности программы растет с увеличением числа ее запусков по гиперболическому закону. Это подтверждает интуитивно ясное соображение о том, что программа тем надежнее, чем больше опыт ее эксплуатации, который зависит как от интенсивности использования программы, так и от тиража компьютера, на котором она запускается. Таким образом, надежность программ для персональных компьютеров типа IBM РС, общий тираж которых составляет в настоящее время около 100 миллионов, на несколько порядков выше аналогичных программ для специализированных процессоров (если, конечно, такие программы действительно существуют и эксплуатируются).

Стало классическим утверждение, что ошибка в программе обходится тем дороже, чем позже она обнаружена. На самом же деле дорого обходится не ошибка, а опыт эксплуатации программы (т.е. общее количество ее запусков), независимо от того, проявились ошибки или нет. Перед пользователем программы, в которо проявились ошибки, возникает дилемма: продолжать ее эксплуатировать или установить модифицированную версию (разумеется, речь не идет о тех случаях, когда последствия ошибок могут быть катастрофическими). Следует еще раз подчеркнуть, что если программа подвергалась модификациям (в частности, в ней исправлялись ошибки), то при оценке надежности следует учитывать только запуски, выполненные с момента последней модификации: в результате модификации получается новая программа, с другим (возможно, худшим) показателем надежности, и вся прежняя статистика должна быть аннулирована. Этим частично объясняется тот факт, что пользователи порой предпочитают обновленным версиям программ старые, проверенные, эксплуатировавшиеся длительное время, даже если в них обнаружены погрешности: опыт эксплуатации стоит очень дорого, и даже если в программе выявлены ошибки, гораздо дешевле внести исправления и дополнения в инструкции к программе (если это, конечно, возможно), чем пожертвовать накопленным опытом.

Стремление разработчиков создавать бинарно - совместимые семейства микропроцессоров находит дополнительное объяснение с позиций надежности программного обеспечения: если бы это удалось в полной мере, то опыт эксплуатации программ не приходилось бы аннулировать при переходе на новый тип процессора, что способствовало бы существенному повышению надежности использующихся программ.

Интересно сравнить характеристики надежности аппаратуры и компьютерной программы. Как известно, надежность физического устройства меняется со временем: в начале эксплуатации она растет (присходит "приработка" изделия), затем некоторое время остается постоянной и, наконец, начинает уменьшаться (эффект износа или "старения"). Говоря о надежности аппаратуры, имеют в виду именно среднюю фазу, на которой надежность постоянна. Всеми отмечается тот факт, что компьютерная программа не изнашивается, так что последней фазы для нее не существует, однако важно подчеркнуть, что первая фаза ("приработки" программы) тоже отсутствует: коррекция программы (независимо от причин, по которым она выполнялась) аналогична внесению изменений в конструкцию физического устройства, в результате чего получается новое устройство, с другим показателем надежности.

Методы повышения надёжности программного обеспечения