Остальные коэффициенты получаются циклической перестановкой индексов i, j, p, m.
Как видно из фигуры 1, узлы i, j, p, m пронумерованы в соответствии с правилом правой руки, причем первые три узла пронумерованы по часовой стрелке, если смотреть со стороны последнего узла.
Перемещение элемента определяется двенадцатью компонентами перемещений его узлов:
(6) где и т.д.Перемещение произвольной точки можно записать в виде
(7)где скалярные величины определяются соотношениями
и т.д.А I- единичная матрица размерности 3*3.
Ясно, что эти функции перемещений будут удовлетворять требованиям непрерывности на границах между элементами. Этот результат является прямым следствием линейного закона изменения перемещений.
В трехмерном случае учитываются все шесть компонент деформации. Используя известные обозначения Тимошенко, запишем матрицу деформаций в виде
(9)С помощью соотношений (4) - (7) легко убедиться, что
(10) где . (11)Остальные подматрицы получаются простой перестановкой индексов.
Начальные деформации, такие, как обусловленные тепловым расширением, можно записать обычным образом в виде шестикомпонентного вектора, имеющего, например, для изотропного теплового расширения простой вид:
(12)где
- коэффициент линейного расширения, а - средняя по элементу температура.В случае материала с изотропией свойств матрица [D], связывающая шесть компонент напряжения с компонентами деформации, может содержать не более чем 21 независимую постоянную.
В общем случае
. (13)Так как такое умножение никогда не выполняется в явном виде, запишем здесь матрицу [D] только для изотропного материала, хотя это нетрудно сделать и для случая произвольной анизотропии. При использовании обычных упругих постоянных: модуля упругости Е и коэффициента Пуассона v- матрица имеет вид
(14)Выражение для матрицы жесткости, определяемой в общем случае соотношением
, можно проинтегрировать точно, так как компоненты деформации и напряжения постоянны внутри элемента.Подматрица с индексами rs матрицы жесткости имеет размерность 3*3 и определяется соотношением
, (15)где V- объем тетраэдра.
Узловые силы, обусловленные начальной деформацией, записываются в виде
, (16) или для i-ой компоненты .Математическая модель системы включает геометрическую, структурную, механико-математическую модели, краевые условия и условия равновесия системы.
Геометрическая модель представляет собой параллелепипед, размеры которого определяются нулевыми перемещениями на его ребрах.
Механико-математическая модель системы “плита-основание”: для основания si=E iei, для плиты si=E’ei, E’>>Ei, где E’, Ei -модули упругости основания и плиты, si, ei -интенсивности напряжений и деформаций.
Краевые условия области определения системы “плита-основание": перемещения на всех ребрах, кроме верхнего равны нулю, на верхнем ребре области определения на поверхности плиты задается внешняя нагрузка.
Процесс дискретизации разделяется на 2 этапа:
Разбиение области на подобласти. Подобласти характеризуются стационарностью определяющих характеристик: свойства материала, прилагаемая нагрузка.
Разбиение подобластей на конечные элементы. Подобласти разбиваются на симплекс-элементы.
Дискретизация производится элементами малых размеров. Деформация и напряжение в любом конечном элементе выражаются через перемещения по известным формулам. В узлах элементов вводятся силы, статистически эквивалентные напряжениям на границе соответствующего элемента и внешним силам, приложенным к нему.
Разбивка на элементы производится так, что в пределах одного элемента участок среды рассматривается как однородный. Любой другой элемент, оставаясь однородным, может характеризоваться свойствами, отличными от соседних элементов. Таким образом, система в целом представляет неоднородную среду.
Применение МКЭ для решения системы “плита-основание” приводит к системе линейных алгебраических уравнений с ленточной симметричной матрицей. Ширина ее полуленты зависит от порядка нумерации узлов и определяется по формуле: B= (R+1) Q, где R - максимальная разность разностей номеров узлов конечных элементов, Q - число неизвестных (степеней свободы) в каждом узле.
Первый этап алгоритма построения дискретной модели представляет определение расчетной области. Расчетная область представляется правильной геометрической фигурой, размеры которой определяются нулевыми перемещениями на всех ребрах, кроме верхнего. В нашем случае- параллелепипед.
Второй этап- дискретизация расчетной области, учитывающая особенности структуры грунтового основания. В результате строится нерегулярная решетка с массивами шагов по координатным осям. Каждый параллелепипед дискретной решетки делится на шесть тетраэдральных элементов.
Для каждого конечного элемента (тетраэдра) необходимо задать характеристики: модуль упругости, коэффициент Пуассона.
Третий этап - задание краевых условий. Граничные условия расчетной области определяются системой внешних сил и выбором размеров расчетной области (этап 1). Система внешних сил задается в виде вектора нагрузок, определенного для всех узлов расчетной области. С каждым узлом связано три значения нагрузки: одно по направлению оси OX, второе по направлению оси OY, третье по направлению оси OZ. Вектор нагрузок задается на верхнем ребре. На всех остальных обычно задаются нулевые перемещения. Четвертый этап - формирование матрицы жесткости. Построение матрицы жесткости производится с учетом ее особенностей: симметричности, ленточности. Матрица жесткости (МЖ) размещается в ОП упакованной в прямоугольник, т.е. хранится верхняя полулента. Для построения МЖ используется аналитический алгоритм построения [1].
Согласно которому матрица жесткости имеет вид:
где i- номер узла, связанного с узлами j; j=1,2,3,4;
Пятый этап - учет граничных условий в МЖ. Используется вектор усилий и вектор корректировки, с помощью которого описываются задаваемые граничные значения перемещений. Учёт граничных условий приводит к изменению матрицы жёсткости [K] и векторов узловых сил и перемещений. Матрица [K] уже не будет сингулярной.
Шестой этап - решение системы линейных алгебраических уравнений. На этом этапе используется метод квадратного корня, учитывающий упаковку МЖ в прямоугольник.
Этот метод состоит в следующем:
Если матрица симметрическая, то её можно представить следующим образом:
A=S*DS,
Где S - верхняя треугольная матрица с положительными элементами на главной диагонали; D - диагональная матрица, с элементами +1 или -1 на главной диагонали; S* - нижняя треугольная матрица. Коэффициенты
и вычисляются по формулам:i=j то,
; ;i<j то
;В том случае, если матрица A самосопряжённая и положительно определённая, то матрицу D можно опустить, так как она будет единичной. Метод осуществляется по следующей схеме:
сначала решаем уравнение S*Y=B
затем уравнение SX=Y, находя решение системы.
Наша работа заключается в решении СЛАУ методом квадратного корня, используя ленточную симметрическую матрицу, компактно упакованную.
Полуленточная матрица системы строиться следующим образом: