Смекни!
smekni.com

Сущность искусственного интеллекта (стр. 2 из 5)

Кстати интересен план имитации мышления, предложенный А. Тьюрингом. "Пытаясь имитировать интеллект взрослого человека, — пишет Тьюринг, — мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человек. Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения "программы-ребенка" и задачу "воспитания" этой программы".

Забегая вперед, можно сказать, что именно этот путь используют практически все системы ИИ. Ведь понятно, что практически невозможно заложить все знания в достаточно сложную систему. Кроме того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. д.).

1.2 ПеоридыразвитиясистемИИ

Несмотря на свою краткость, история исследований и разработок систем искусственного интеллекта может быть разделена на четыре периода:

60-е – начало 70-х годов XX века – исследования по "общему интеллекту", попытки смоделировать общие интеллектуальные процессы, свойственные человеку: свободный диалог, решение разнообразных задач, доказательство теорем, различные игры (тина шашек, шахмат и т.д.), сочинение стихов и музыки и т.д.;

70-е годы – исследования и разработка подходов к формальному представлению знаний и умозаключений, попытки свести интеллектуальную деятельность к формальным преобразованиям символов, строк и т.д.;

с конца 70-х годов – разработка специализированных на определенных предметных областях интеллектуальных систем, имеющих прикладное практическое значение (экспертных систем);

90-е годы – фронтальные работы по созданию ЭВМ 5-го поколения, построенных на иных принципах, чем обычные универсальные ЭВМ, и программного обеспечения для них.

В настоящее время "искусственный интеллект" – мощная ветвь информатики, имеющая как фундаментальные, чисто научные основы, так и весьма развитые технические, прикладные аспекты, связанные с созданием и эксплуатацией работоспособных образцов интеллектуальных систем. Значение этих работ для развития информатики таково, что именно от их успеха зависит появление ЭВМ нового 5-го поколения.

Любая задача, для которой не известен алгоритм решения, может быть отнесена к области искусственного интеллекта. Примерами могут быть игра в шахматы, медицинская диагностика, составление резюме текста или перевода его на иностранный язык – для решения этих задач не существует четких алгоритмов.

Еще две характерные особенности задач искусственного интеллекта: преобладающее использование информации в символьной (а не в числовой) форме и наличие выбора между многими вариантами в условиях неопределенности.

2. Искусственный интеллект и системы ИИ

2.1 Проблема представления знаний в ИИ

Основной особенностью интеллектуальных систем является то, что они основаны на знаниях, а вернее, на некотором их представлении. Знания здесь понимаются как хранимая (с помощью ЭВМ) информация, формализованная в соответствии с некоторыми правилами, которую ЭВМ может использовать при логическом выводе по определенным алгоритмам.

Наиболее фундаментальной и важной проблемой является описание смыслового содержания проблем самого широкого диапазона, т.е. должна использоваться такая форма описания знаний, которая гарантировала бы правильную обработку их содержимого по некоторым формальным правилам. Эта проблема называется проблемой представления знаний.

В настоящее время наиболее известны четыре подхода к представлению знаний в обсуждаемых системах: продукционная модель; логическая модель; семантические сети; фреймы. Продукционные правила – наиболее простой способ представления знаний. Он основан на представлении знаний в форме правил, структурированных в соответствии с образцом "Если - То". Часть правила "Если" называется посылкой, а "То" – выводом или действием. Правило в общем виде записывается так: Если А1,А2,...,А" То В. Такая запись означает, что "если все условия от Ai до А" являются истинными, то В также истинно" или "когда все условия от Ai до А" выполняются, то следует выполнить действие В". Например, рассмотрим правило: Если у является отцом х, z является братом у, то z является дядей x. В данном случае описано универсальное правило для трех переменных: x, y, z. Подставляя конкретные значения (Вася, Федя, Петя) вместо переменных можно получить конкретные различные знания. Конечно, при решении задач в искусственном интеллекте, используются куда более сложные постановки вопроса.

Знания, представленные в интеллектуальной системе, образуют базу знаний. В интеллектуальную систему входит также механизм выводов, который позволяет на основе знаний, имеющихся в базе знаний, получить новые знания. Простота и наглядность представления такой модели знаний обусловила применения данной системы во многих системах. Кроме того, данная модель может служить основой языка программирования, ориентированного на знания. Например, язык Пролог опирается на данную продукционную модель.

2.2 Различные подходы к построению систем ИИ

Исторически сложились три основных направления в моделировании ИИ.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д. Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Существуют различные подходы к построению систем ИИ. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас. Кроме того, поскольку по-настоящему полных систем ИИ в настоящее время нет, то нельзя сказать, что какой-то подход является правильным, а какой-то ошибочным.

Для начала кратко рассмотрим логический подход. Почему он возник? Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных.

Основой для данного логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов — в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.

Конечно можно сказать, что выразительности алгебры высказываний не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является бит — ячейка памяти, которая может принимать значения только 0 и 1. Таким образом было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и про межуточные значения — не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой алгебры.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.