Смекни!
smekni.com

Цвет и графика на ЭВМ (стр. 5 из 7)

Класс 3 - непрерывные кривые и линии. Примеры изображений 3-го класса - это контуры областей, сигналы, диаграммы и графики. Соответствующие данные являются последовательностями точек, допускающих представление через их координаты х и у. Но такой метод представления довольно неэффективен. При чем то же самое относится и к представлению, основанному на использовании разности значений координат Dх и Dу у соседних точек. Более эффективным является представление с помощью цепных кодов, при использовании которых вектору, соединяющему 2 соседние точки ставится в соответствие один символ принадлежащий некоторому конечному множеству.

На рисунке показан обычный цепной код, использующий 8 направлений.

Задание стандартного цепного кода

Если точки расположены достаточно близко друг к другу, то ошибка вносимая квантованием может оказаться приемлемой. Более эффективный способ представления заключается в применении дифференциального цепного кода, предусматривающего кодирование каждой точки разностью 2-х последовательных кодов. В этом случае значения будут 0,+/-1,+/-2,+/-3 и 4. Вероятности их появления неодинаковы. При кодировке гладких кривых значение 0 и +/-1 будет появляться чаще, чем все остальные, а 4 - крайне редко. Поэтому для представления различных направлений можно воспользоваться каким-либо из кодов с переменной длинной.

При таком способе кодирования обычно затраты в среднем не превышают 2-х бит на точку.

Класс 4 - точки или многоугольники. Изображения класса 4 состоят из множеств отдельных точек, отстоящих друг от друга так далеко, что для их представления цепным кодом пользоваться нельзя. Вместо него следует использовать матрицу, содержащую их координаты х и у. Соответствующая аппаратура отображения позволяет соединить точки прямыми или простыми кривыми. В прикладных задачах машинной графики чаще всего используют изображения именно этого типа. Несмотря на то, что визуальное отображение может относится к классу 2 или к классу 1, его внутреннее изображение принадлежит классу 4. Во многих прикладных задачах используется одна из следующих форм представления:

1) Аппроксимация поверхностей многогранниками. В этом случае грани обычно треугольные. После проектирования изображение состоит из многоугольников.

2) Криволинейная аппроксимация поверхностей. На поверхности вычерчивается ряд кривых, описание которых потом используется для получения проекций, воспроизводимых в виде изображений 3 класса.

3) Аппроксимация участками поверхности высшего порядка. Этот способ аналогичен первому способу, за исключением того, что в качестве элементов, образующих поверхность объекта используется не плоские многоугольники, а участки поверхности высшего порядка.

Во всех случаях положение объекта определяется некоторым небольшим числом точек и поэтому изображение класса 4 предоставляют наибольший интерес для машинной графики.

Ввод изображения

Изображение, представленное в аналоговой форме, необходимо преобразовать в некоторую числовую матрицу, а затем можно приступать к его обработке на ЭВМ. Процесс такого преобразования называется дискретизацией и состоит из 2-х процессов: выборки и квантования. Первый процесс заключается в выборе на поле наблюдения начального множества точек, в любой выбранной точке измеряются характеристики изображения, которые потом используются на всех последующих этапах обработки изображения. Так как ЭВМ располагает ограниченной памятью, то результаты полученных измерений описывается конечным числом символов. Такая процедура называется процессом квантования. Характеризуя плотность размещения выборочных точек, часто говорят о пространственном разрешении, а, характеризуя точность представления результатов указанных измерений, говорят о тоновом или цветовом разрешении.

Во многих устройствах дискретизации изображений используется телевизионные камеры, так как они обеспечивают преобразование светового сигнала в электрический. К электрическому сигналу можно уже применять процессы выборки и квантования, используя для этого аналого-цифровой преобразователь (АЦП). Но возникает проблема - это очень большая скорость воспроизведения данных на выходе стандартных телевизионных камер. Системы телевизионного вещания передают 30 кадров в секунду и любой кадр содержит около 500 строк растра. Если вести обработку в реальном масштабе времени необязательно, то можно перестроить телекамеру так, чтобы она работала с меньшей скоростью или воспользоваться каким-либо устройством, осуществляющем сжатие полосы частот. В специализированных устройствах дискретизации изображений, просмотр изображения в соответствующем порядке осуществляется при помощи особой технологии управления световыми пучками. В барабанных сканирующих устройствах изображение закрепляется на вращающемся барабане, а световой пучок перемещается параллельно оси барабана. Устройства дискретизации этого типа обычно работают медленнее по сравнению с телевизионными камерами, но результаты получаются лучше.

Преобразования изображений

Преобразование изображения класса 1 в изображение класса 2 - это процесс сегментации, обеспечивает выделение областей приблизительно одинакового цвета и (или) яркости. Часто термин "сегментация" используется для обозначения процесса поиска однородностей в смысле некоторого более сложного свойства (типа текстур).

Преобразование изображений класса 2 в класс 3 заключается в построении или отслеживании контура. Это преобразование обеспечивает отображение заданной области в некоторую замкнутую кривую. Второе допустимое преобразование - прореживание, заключается в отображении области в некоторый граф, называемый остовом области.

Преобразование из класса 3 в класс 4, называемое сегментацией кривых, предназначено для отыскания критических точек конура. Если это многоугольники, то такими точками являются углы. Применяется при распознавании образов, для их реализации может потребоваться применение сложных математических методов.

Преобразование из класса 4 в класс 3 включает процессы интерполирования, обеспечивающего проведение гладкой кривой через некоторое множество точек и аппроксимация, обеспечивающая проведение гладкой кривой рядом с некоторым множеством точек.

Преобразование из класса 3 в класс 2. Если в качестве входного изображения задается контур, то часто возникает задача заполнения контура (задача штриховки). Причем если рассматривать штриховку, то яркость или цвет некоторой области не остаются одинаковыми, а изменяется в соответствии с определенными правилами. Если входным изображением служит остов, то для восстановления области необходимо использовать процедуру расширения.

Преобразование из класса 2 в класс 1. Если изображение, воспроизводимое на экране в нескольких цветах, то оно часто оказывается ущербным в эстетическом отношении, т.к. легко обнаруживаются контуры (границы) между объектами. Некоторого сглаживания изображения можно добиться с помощью фильтра нижних частот или подмешиванием низкочастотного шума.

Преобразования из классов с меньшим номером в класс с большим номером относится к сфере интересов распознавания образов. Обратные преобразования - это сфера интересов машинной графики. При обработке изображений используются и те и другие преобразования, а также преобразования, не выводящие изображения за пределы соответствующего класса. Таким образом, улучшение качества изображения является внутриклассовым изображением, а сжатие изображения часто оказывается преобразованием, переводящим его из класса 1 в класс 2.

Еще один важный класс задач - это преобразования, связывающие двухмерное изображение и трехмерные объекты. Термин "проектирование" используется для обозначения операций, при помощи которых трехмерный объект преобразовывается в двухмерное изображение. Часто двухмерное изображение преобразуется в одномерный массив. Для операции восстановления трехмерного объекта по его изображению, используется термин "обратное проектирование". Эти задачи используются в 2-х прикладных областях, например, в аксиальной поперечной томографии, или когда поперечное сечение трехмерного объекта восстанавливается по набору рентгеновских проекций. Для обозначения процедур, обеспечивающих решение этой задачи используется термин "алгоритмы воспроизведения". В машинной графике часто требуется воспроизвести некоторую проекцию трехмерного представления пространственного объекта.


Основные области применения компьютерной графики

Научная графика

Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика

Область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.