Смекни!
smekni.com

Емпіричне дослідження програмного забезпечення (стр. 2 из 3)

Мета будівництва моделі - витягування з вихідного коду інформації, яка доречна з точки зору специфічної мети. Для цього використовується відкрита бібліотека для аналізу Recoder (для Java) та McC (Model Capture for C++).

Інструмент iPlasma розвивався як пошуковий інструмент. Він успішно застосовувався для аналізу проектів ряду ”real-world” систем, у тому числі самі великі системи (>1 MLOC), подібно до mozilla (C++, 2.56-мільйонів LOC) і eclipse (Java, 1.36-мільйонів LOC).

4.1 Openproj-1.4-src

Було проведено статичний аналіз за допомогою Statistica для проекту Openproj-1.4-src для метрик зазначених у варіанті. Для метрик було обчислено статистичні характеристики(математичне сподівання, середнє квадратичне відхилення, коефіцієнти ексцесу та асиметрії). Також довірчий інтервал, на основі якого було відсіяно значення метрик, що не потрапляють в нього. Для кожної метрики було визначено закон розподілу. Документ з усіма обчисленнями додається у форматі STATISTICA Workbook «Openproj».

Мал.3. Проведений статичний аналіз за допомогою Statistica для метрик LOC, NOC, HDD, CALL, WMC та BOvR

Мал.4. Проведений статичний аналіз за допомогою Statistica для метрик TCC, CDISP та PNAS

4.2 TalendOpen Studio 3.2.1

Мал.5. Проведений статичний аналіз за допомогою Statistica для метрик LOC, NOC, HDD, CALL, WMC та BOvR

Мал. 6. Проведений статичний аналіз за допомогою Statistica для метрик TCC, CDISP та PNAS

Було проведено статичний аналіз за допомогою Statistica для проекту TalendOpen Studio 3.2.1 для метрик зазначених у варіанті. Для метрик було обчислено статистичні характеристики(математичне сподівання, середнє квадратичне відхилення, коефіцієнти ексцесу та асиметрії). Також довірчий інтервал, на основі якого було відсіяно значення метрик, що не потрапляють в нього. Для кожної метрики було визначено закон розподілу. Документ з усіма обчисленнями додається у форматі STATISTICA Workbook «TalendOpen Studio».

4.3 Plazma-source 0.1.8

Мал.7. Проведений статичний аналіз за допомогою Statistica для метрик LOC, NOC, HDD, CALL, WMC та BOvR


Мал. 8. Проведений статичний аналіз за допомогою Statistica для метрик TCC, CDISP та PNAS

Було проведено статичний аналіз за допомогою Statistica для проекту plazma-source 0.1.8 для метрик зазначених у варіанті. Для метрик було обчислено статистичні характеристики(математичне сподівання, середнє квадратичне відхилення, коефіцієнти ексцесу та асиметрії). Також довірчий інтервал, на основі якого було відсіяно значення метрик, що не потрапляють в нього. Для кожної метрики було визначено закон розподілу. Документ з усіма обчисленнями додається у форматі STATISTICA Workbook «plazma-source».

4.4 Статичний аналіз трьох проектів разом

Первинний статичний аналіз було проведено для усіх трьох проектів разом. В результаті, було отримано нові статичні показники та побудовано гістограми. Усі обчислення та побудови представлені в додатковому документі формату STATISTICA Workbook «Курсовий проект».

Мал.9. Первинний статичний аналіз для метрик LOC, NOC, CALL, WMC, BovR на основі усіх трьох проектів

Мал.10. Первинний статичний аналіз для метрик TCC, CDISP, PNAS на основі усіх трьох проектів

Для вище згаданих трьох проектів було проведено статичний аналіз: обчислено статичні характеристики такі, як математичне сподівання, середнє квадратичне відхилення, коефіцієнт ексцесу та асиметрії, довірчі інтервали та визначено закони розподілу. Підсумовуючи увесь статичний аналіз, треба сказати, що дані проекти майже всі мають ненормальний закон розподілу, про це свідчать коефіцієнти асиметрії та ексцесу. За результатами проведення статичного аналізу(усі додаткові обчислення додаються у додатках) можемо сказати, що дані проекти мають не якісно побудовану структуру, алгоритми виконання та взагалі не є досить якісними програмними продуктами.

Порівнюючи первинний статичний аналіз окремо кожного проекту з первинним статичним аналізом усіх проектів рзом, треба зауважити, що великих відмінностей та розходжень у результатах аналізу не виявлено.


5. Кореляційний аналіз

Кореляційний аналіз проводиться на основі отриманих значень метрик по варіанту та експертних оцінок властивостей ПЗ також по варіанту.

5.1 Openproj-1.4-src

Таблиця №3. Коефіцієнт кореляції

У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики проекту Openproj-1.4-src відносно однієї з властивостей ПЗ, а саме легкості у використанні.

Таблиця №4. Коефіцієнт кореляції


У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики проекту Openproj-1.4-src відносно однієї з властивостей ПЗ, а саме супроводжуваності програмного продукту.

НОТАТКА. Усі обчислення коефіцієнтів кореляції для проекту Openproj-1.4-src додано у документі формату STATISTICA Workbook «Openproj_кореляція».

5.2 TalendOpen Studio 3.2.1

Таблиця №5. Коефіцієнт кореляції

У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики проекту TalendOpen Studio 3.2.1 відносно однієї з властивостей ПЗ, а саме легкості у використанні.

У таблиці 6 приведено обчислення коефіцієнта кореляції кожної метрики проекту TalendOpen Studio 3.2.1 відносно однієї з властивостей ПЗ, а саме супроводжуваності програмного продукту.


Таблиця №6. Коефіцієнт кореляції

НОТАТКА. Усі обчислення коефіцієнтів кореляції для проекту TalendOpen Studio 3.2.1 додано у документі формату STATISTICA Workbook «TalendOpen Studio_кореляція».

5.3 Рlazma-source 0.1.8

Таблиця №7. Коефіцієнт кореляції

У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики проекту plazma-source 0.1.8 відносно однієї з властивостей ПЗ, а саме легкості у використанні.


Таблиця №8. Коефіцієнт кореляції

У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики проекту plazma-source 0.1.8 відносно однієї з властивостей ПЗ, а саме супроводжуваності програмного продукту.

НОТАТКА. Усі обчислення коефіцієнтів кореляції для проекту plazma-source 0.1.8 додано у документі формату STATISTICA Workbook «plazma-source_кореляція».

5.4 Кореляційний аналіз трьох проектів разом

Кореляційний аналіз було проведено для усіх трьох проектів разом. В результаті, було отримано нові коефіцієнти кореляції. Усі обчислення представлені в додатковому документі формату STATISTICA Workbook «Курсовий проект_кореляція».

У таблиці 9 приведено обчислення коефіцієнта кореляції кожної метрики усіх трьох проектів разом відносно однієї з властивостей ПЗ, а саме легкості у використанні.


Таблиця №9 Коефіцієнт кореляції

Таблиця №10 Коефіцієнт кореляції

У даній таблиці приведено обчислення коефіцієнта кореляції кожної метрики усіх трьох проектів разом відносно однієї з властивостей ПЗ, а саме супроводжуваності програмного продукту.

Для вище згаданих трьох проектів було проведено кореляційний аналіз: обчислено коефіцієнти кореляцій кожної метрики відносно експертних оцінок властивостей програмного забезпечення. Підсумовуючи увесь кореляційний аналіз, треба сказати, що дані проекти мають коефіцієнт кореляції у досить однакових проміжках, тобто майже однакові, різняться деякими відхиленнями від середнього значення.

Порівнюючи кореляційний аналіз окремо кожного проекту з кореляційним аналізом усіх проектів разом, треба зауважити, що великих відмінностей та розходжень у результатах аналізу не виявлено.


6. Регресійний аналіз

На основі попередніх обчислень було проведено регресійний аналіз, результатом якого є побудова ліній регресії. Побудовані лінії регресії представлені нижче. Усі обчислення та сама побудова ліній регресії представлена у додатковому документі формату STATISTICA Workbook «Курсовий проект_регресія».

Для зрозумілості того, як відбувається побудова лінії регресії та які атрибути мають важливе значення, нижче приведено побудову однієї метрики відносно експертної оцінки.

Мал.12. Регресійний аналіз метрики NOC відносно експертної оцінки властивості «Легкість у виконанні»

Результатом проведення регресійного аналізу є побудова ліній регресій між метрика трьох проектів та експертними оцінками двох властивостей програмного забезпечення. На основі отриманих результатів, можемо сказати, що у даних проектах присутня лише лінійна регресія, а кореляційні поля мають складну конфігурацію. Але треба зауважити, що значення метрики та експертних оцінок дуже віддалені одна від одної. А це свідчить про те, что майже усі регресії є непотрібними, бо залежності між метриками та експертними оцінками немає, а якщо і є, то дуже малі.