Смекни!
smekni.com

Компьютерная графика (стр. 4 из 5)

Большинство программ, читающих файл TIFF, способны без проблем прочесть файлы этого формата, созданные на других системах. Структура формата TIFF изменчива, что позволяет ему хранить разнообразные типы изображений.

Файлы данного формата способны хранить пиксельные данные, сжатые с помощью разнообразных схем, например, кодированием по методу Хаффмана.

PSD (PhotoShop Document). Собственный формат программы Adob Pnotoshop (расширение имени файла.PSD), один из наиболее мощных по возможностям хранения растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов.

PCX. Формат появился как формат хранения растровых данных программы PC PaintBrush фирмы Z-Soft и является одним из наиболее распространенных (расширение имени файла.PCX). Отсутствие возможности хранить цветоделенные изображения, недостаточность цветовых моделей и другие ограничения привели к утрате популярности формата. В настоящее время считается устаревшим.

WMF (Windows MetaFile). Формат хранения векторных изображений операционной системы Windows (расширение имени файла.WMF). По определению поддерживается всеми приложениями этой системы. Однако отсутствие средств для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии, и другие недостатки ограничивают его применение.

EPS (Encapsulated PostScript). Формат описания как векторных, так и растровых изображений на языке PostScript фирмы Adobe, фактическом стандарте в области допечатных процессов и полиграфии (расширение имени файла.EPS). Так как язык PostScript является универсальным, в файле могут одновременно храниться векторная и растровая графика, шрифты, контуры обтравки (маски), параметры калибровки оборудования, цветовые профили. Для отображения на экране векторного содержимого используется формат WMF, а растрового – TIFF. Но экранная копия лишь в общих чертах отображает реальное изображение, что является существенным недостатком EPS. Действительное изображение можно увидеть лишь на выходе выводного устройства, с помощью специальных программ просмотра или после преобразования файла в формат PDFv приложениях Acrobat Reader, Acrobat Exchange.

PDF (Portable Document Format). Формат описания документов, разработанный фирмой Adobe (расширение имени файла.PDF). Хотя этот формат в основном предназначен для хранения документа целиком, его впечатляющие возможности позволяют обеспечить эффективное представление изображений. Формат является аппаратно независимым, поэтому вывод изображений допустим на любых устройствах – от экрана монитора до фотоэкспонирующего устройства. Мощный алгоритм сжатия со средствами управления итоговым разрешением изображения обеспечивает компактность файлов при высоком качестве иллюстраций.

Основные понятия трехмерной графики

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

• спроектировать и создать виртуальный каркас («скелет») объекта, наиболее полно соответствующий его реальной форме;

• спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;

• присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – «спроектировать текстуры на объект»);

• настроить физические параметры пространства, в котором будет действовать объект,

• задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

• задать траектории движения объектов;

• рассчитать результирующую последовательность кадров;

• наложить поверхностные эффекты на итоговый анимационный ролик.

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и «гладкость» поверхности в целом. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое, с учетом их взаимодействия на основе заданной физической модели.

Деформация объекта обеспечивается перемещением контрольных точек, расположенных вблизи. Каждая контрольная точка связана с близлежащими опорными точками, степень ее влияния на них определяется удаленностью. Другой метод называют сеткой деформации. Вокруг объекта или его части размещается трехмерная сетка, перемещение любой точки которой вызывает упругую деформацию как самой сетки, так и окруженного объекта.

Еще одним способом построения объектов из примитивов служит твердотельное моделирование. Объекты представлены твердыми телами, которые при взаимодействии с другими телами различными способами (объединение, вычитание, слияние и другие) претерпевают необходимую трансформацию. Например, вычитание из прямоугольного параллелепипеда шара приведет к образованию в параллелепипеде полукруглой лунки.

После формирования «скелета» объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства. Для построения поверхностей материалов используют пять основных физических моделей:

• поверхности с диффузным отражением без бликов (например, матовый пластик);

• поверхности со структурированными микронеровностями (например, металлические);

• поверхности со специальным распределением микронеровностей с учетом взаимных перекрытий (например, глянец);

• модель, позволяющая дополнительно учитывать поляризацию света;

• модель, позволяющая корректировать направления отражения и параметры преломления света.

Закраска поверхностей осуществляется методами Гуро (Gouraud) или Фонга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки.

Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, представляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке. К таковым компонентам относятся:

• свет, пришедший с обратной стороны поверхности, то есть преломленный свет;

• свет, равномерно рассеиваемый поверхностью;

• зеркально отраженный свет;

• блики, то есть отраженный свет источников;

• собственное свечение поверхности.

Свойства поверхности описываются в создаваемых массивах текстур (двух- или трехмерных). Таким образом, в массиве содержатся данные о степени прозрачности материала; коэффициенте преломления; коэффициентах смещения компонентов (их список указан выше); цвете в каждой точке, цвете блика, его ширине и резкости; цвете рассеянного (фонового) освещения; локальных отклонениях векторов от нормали (то есть, учитывается шероховатость поверхности).

Следующим этапом является наложение («проектирование») текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект – задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.

Из всех параметров пространства, в котором действует создаваемый объект, с точки зрения визуализации самым важным является определение источников света. В трехмерной графике принято использовать виртуальные эквиваленты физических источников.

• Аналогом равномерного светового фона служит так называемый растворенный свет (Ambient Light). Он не имеет геометрических параметров и характеризуется только цветом и интенсивностью. Пример в природе – естественная освещенность вне видимости Солнца и Луны.

• Удаленный не точечный источник называемый удаленным светом (Distant Light). Ему присваиваются конкретные геометрические параметры (координаты). Аналог в природе – солнце.

• Точечный источник света (Point Light Source) равномерно испускает свет во. всех направлениях и также имеет координаты. Аналог в технике – электрическая лампочка.

• Направленный источник света (Direct Light Source) кроме местоположения характеризуется направлением светового потока, углами раствора полного конуса света и его наиболее яркого пятна. Аналог в технике – прожектор.

После завершения конструирования и визуализации объекта приступают к его «оживлению», то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происходит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями.