Шаг 0. Заполняем начальную симплекс-таблицу.
Базисные переменные | x1 | x2 | S1 | s2 | s3 | s4 | Решение В | |
Z | -3 | -2 | 0 | 0 | 0 | 0 | 0 | Z-уравнение |
s1 | 1 | 2 | 1 | 0 | 0 | 0 | 6 | s1-уравнение |
s2 | 2 | 1 | 0 | 1 | 0 | 0 | 8 | s2-уравнение |
s3 | -1 | 1 | 0 | 0 | 1 | 0 | 1 | s3-уравнение |
s4 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | s4-уравнение |
Шаг 1. Условие оптимальности или правило выбора включаемой в базис переменной. Вводимой в базис переменной в задаче максимизации (минимизации) является небазисная переменная, имеющая в Z-строке наибольший по модулю отрицательный (положительный) коэффициент. Если таких коэффициентов несколько, то выбор – произвольный и после этого переходят к шагу 2. Если таких коэффициентов нет, то решение оптимально.
Столбец симплекс-таблицы, соответствующий включаемой переменной, будем называть ведущим столбцом. В нашем случае включаем в базис переменную x1.
Шаг 2. Условие допустимости или правило выбора исключаемой из базиса переменной (одинаковое в задачах максимизации и минимизации). В качестве исключаемой из базиса переменной выбирается та базисная переменная, для которой отношение постоянной в правой части соответствующего ограничения к положительному коэффициенту ведущего столбца минимально. В случае равенства этого отношения для нескольких базисных переменных выбор делается произвольно.
Строку симплекс-таблицы, соответствующую исключаемой переменной, будем называть ведущей строкой. В нашем случае исключаем из базиса переменную s2.
Шаг 3. Вычисляем новое базисное решение и переходим к шагу 1.
Симплекс-таблица, соответствующая первой итерации:
Базисные переменные | x1 | x2 | s1 | S2 | s3 | s4 | Решение В | |
Z | 0 | -½ | 0 | 3/2 | 0 | 0 | 12 | Z-уравнение |
s1 | 0 | 3/2 | 1 | - ½ | 0 | 0 | 2 | s1-уравнение |
x1 | 1 | ½ | 0 | ½ | 0 | 0 | 4 | s2-уравнение |
s3 | 0 | 3/2 | 0 | ½ | 1 | 0 | 5 | s3-уравнение |
s4 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | s4-уравнение |
Решение не оптимально. Включаем в базис x2 вместо s1. Вторая итерация:
Базисные переменные | x1 | x2 | s1 | s2 | s3 | s4 | Решение В | |
Z | 0 | 0 | 1/3 | 4/3 | 0 | 0 | 12 2/3 | Z-уравнение |
x2 | 0 | 1 | 2/3 | -1/3 | 0 | 0 | 4/3 | s1-уравнение |
x1 | 1 | 0 | -1/3 | 2/3 | 0 | 0 | 10/3 | s2-уравнение |
s3 | 0 | 0 | -1 | 1 | 1 | 0 | 3 | s3-уравнение |
s4 | 0 | 0 | -2/3 | 1/3 | 0 | 1 | 2/3 | s4-уравнение |
Решение оптимально.
Анализ решения на чувствительность.
Из оптимальной симплекс-таблицы либо непосредственно, либо при помощи простых преобразований можно получить информацию относительно
1. Оптимального решения: значения базисных переменных записаны в столбце В оптимальной симплекс-таблицы. Оптимальное значение целевой функции находится на пересечении Z-строки и столбца В оптимальной симплекс таблицы. Для рассмотренного примера: x1=10/3, x2=4/3, s1=s2=0, s3=3, s4=2/3, Zmax=12 2/3.
2. Статуса ресурсов: ресурс называется дефицитным, если в оптимальном решении он использован полностью. Остаточная переменная, соответствующая дефицитному ресурсу в оптимальном решении равна нулю. Для рассмотренного примера дефицитными будут ресурсы 1 и 2, т.к. s1=s2=0,
3. Ценности каждого ресурса: характеризуются величиной улучшения оптимального значения целевой функции, приходящегося на единицу прироста объема данного ресурса. Их еще называют теневыми ценами ресурсов или двойственными оценками. Эта информация представлена в Z-строке оптимальной симплекс-таблицы в столбцах, соответствующих остаточным переменным.
4. Чувствительности оптимального решения к изменениям запасов ресурсов, вариациям коэффициентов целевой функции и интенсивности потребления ресурсов.
Двойственность в линейном программировании.
Любую задачу максимизации с экономической точки зрения можно рассматривать как задачу о распределении ограниченных ресурсов b1, b2,…, bn между различными потребителями, например, между некоторыми технологическими процессами, которые представляются столбцами A1, А2, ..., Аm матрицы ограничений задачи. Любое допустимое решение задачи линейного программирования х1, х2, ..., хm дает конкретное распределение, указывающее ту долю каждого из ресурсов, которая должна быть использована при осуществлении соответствующего технологического процесса.
Рассмотрим пример. Завод производит три вида продукции х1, x2 и x3, каждый из которых требует затрат времени на обработку на токарном, фрезерном и сверлильном станках. Количество машинного времени для каждого из станков ограничено. Пусть с1, c2 и c3 — прибыль от реализации единицы соответствующего вида продукции. Необходимо определить, какое количество каждого вида продукции необходимо производить в течение недели, чтобы получить максимальную прибыль.
Формально эта задача записывается так:
найти
(1)при ограничениях
(2)где a1j, a2j, a3j — время, необходимое для обработки единицы j-го вида продукции соответственно на токарном, фрезерном и сверлильном станках (j = 1, 2, 3); b1, b2, b3 — недельный ресурс машинного времени соответственно для токарного, фрезерного и сверлильного станков.
Обозначим y1, y2 и y3 — цену единицы времени работы на токарном, фрезерном и сверлильном станках. Тогда a1jy1 + a2jy2+ a3jy3 можно трактовать как расходы на изготовление единицы продукции вида j.
Предположим, что цены ресурсов y1, y2 и y3 выбраны так, что выполняются следующие соотношения:
(3)Поскольку b1, b2, b3 — использованный ресурс машинного времени для каждого из станков, то b1y1 + b2y2 + b3y3 — суммарные расходы на производство.
Требуется найти такие y1, y2 и y3, удовлетворяющие условиям (3), при которых минимизируются суммарные расходы на производство:
min g(y1, y2, y3)= b1y1 + b2y2 + b3y3, (4)
y1³ 0, y2³ 0, y3³ 0.
Такую задачу называют двойственной задачей по отношению к задаче (1), называемой прямой.
Запишем теперь прямую и двойственную задачи в общем случае. Прямая задача
(5)
при условиях
(6) . (7)Двойственная задача
(8)при условиях
(9) . (10)Сопоставляя формы записи прямой и двойственной задач, можно установить между ними следующие взаимосвязи:
1) если прямая задача является задачей максимизации, то двойственная будет задачей минимизации, и наоборот;
2) коэффициенты целевой функции прямой задачи c1, c2, …, cn становятся свободными членами ограничений двойственной задачи;
3) свободные члены ограничений прямой задачи b1, b2, …, bm становятся коэффициентами целевой функции двойственной задачи;
4) матрицу ограничений двойственной задачи получают транспонированием матрицы ограничений прямой задачи;
5) если знаки всех неравенств в ограничениях прямой «£», то в двойственной задаче все ограничения будут иметь знак «³»;
6) число ограничений прямой задачи равно числу переменных двойственной задачи, а число ограничений двойственной задачи равно числу переменных прямой задачи.
Переменные y1, y2,…, ym двойственной задачи иногда называют «теневыми ценами».
Двойственную задачу выгоднее решать, чем исходную прямую, если в прямой задаче при малом количестве переменных имеется большое количество ограничений (т > n).
Связь между оптимальными решениями прямой и двойственной задач устанавливают посредством следующих теорем теории двойственности.
Теорема. Если x0 и у0 — допустимые решения прямой и двойственной задач, т. е. если Ах0 £ b и АTy0 ³ с, то
cTx0£ bTy0,
т. е. значения целевой функции прямой задачи никогда не превышают значений целевой функции двойственной задачи.
Теорема(основная теорема двойственности). Если x0 и у0 — допустимые решения прямой и двойственной задач и если cTx0=bTy0, то x0 и у0 — оптимальные решения пары двойственных задач.
Теорема. Если в оптимальном решении прямой задачи i-е ограничение выполняется как строгое неравенство, то оптимальное значение соответствующей двойственной переменной равно нулю.
Смысл этой теоремы состоит в следующем. Если некоторый ресурс bi имеется в избытке и i-е ограничение при оптимальном решении выполняется как строгое неравенство, то оно становится несущественным, и оптимальная цена соответствующего ресурса равна 0.
Теорема. Если в оптимальном решении двойственной задачи ограничение j выполняется как строгое неравенство, то оптимальное значение соответствующей переменной прямой задачи должно быть равно нулю.