В последнее время при анализе проблем, связанных с ИИ, часто применяют математический аппарат нечётких множеств, идея и реализация которого принадлежит американскому математику Л.Заде. Суть подхода состоит в отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечёткой информации. Построение моделей, приближенных е рассуждениям человека, и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечётких систем в сторону практических приложений привело к выявлению целого ряда проблем, таких, как новые архитектуры компьютеров для нечётких вычислений, элементная база нечётких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчёта и разработки нечётких систем управления и многое другое. Математическая теория нечётких множеств, предложенная Л.Заде около тридцати лет назад, позволяет описывать нечёткие понятия и знания, оперировать этими знаниями и делать нечёткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. Нечёткое управление является одной из самых активных и результативных областей исследований применения теории нечётких множеств. Нечёткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются неточно или неопределенно. Экспериментально показано, что нечёткое управление дает лучшие результаты, по сравнению с получаемыми, при общепринятых алгоритмах управления. Нечеткая логика, на которой основано нечеткое управление, ближе к человеческому мышлению и естественным языкам, чем традиционные логические системы. [2,3,4,7,8]
4. Реализация систем ИИ
Ещё в далёком 1954 году американский исследователь А.Ньюэлл решил написать программу для игры в шахматы. Идеей он поделился с аналитиками корпорации RAND Corporation, и которые предложили Ньюэллу свою помощь. В качестве теоретической основы программы было решено использовать метод, предложенный К. Шенноном, основателем теории информации. Точная формализация метода была выполнена А. Тьюрингом. Он же и смоделировал его вручную. К работе была привлечена группа голландских психологов под руководством А. Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 –первый символьный язык обработки списков. Вскоре была написана первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Это была программа «Логик-Теоретик» (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний. Собственно программа для игры в шахматы, NSS, была завершена в 1957 г. В основе её лежали так называемые эвристики – правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований – и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей. [1]
В 1956 году в США собрались основатели кибернетики с целью обсудить возможности реализации проекта «Искусственный интеллект», как они его тогда назвали. В числе участников конференции были Д. Маккарти, М. Минский, К. Шеннон, А. Тьюринг и др. К ИИ первоначально просто отнесли свойства машин брать на себя отдельные функции человека, например, такие как перевод с одного языка на другой, распознавание объектов, принятие оптимальных решений и пр. В СССР направление «Искусственный интеллект» (ИИ) возникло с опозданием на целых 10 лет и пришло на смену кибернетическому и бионическому буму первой половины 60-х годов. Поначалу оптимистам казалось, что произойдет революция и машина начнет думать как человек. Ничего подобного не произошло. Стало ясно, что никакого мышления, аналогичного человеческому, сходу построить не получится. Поэтому акценты сместились в сторону создания искусственного интеллекта – т.е. машинным решением «трудных» задач, которые человек решает, а машина пока нет. Таким образом, первоначально ИИ не претендовал на прямое моделирование мышления, а был просто решением с помощью машины трудноформализуемых «человеческих» задач.
С самого начала предполагалось, что эти решения позволят сформулировать обобщения и выработать специфические методы ИИ, ведущие, в конечном счете, к машинному мышлению. Представители возникшего направления справедливо полагали, что к конструктивному определению и моделированию мышления полезно идти от специфики задач к методам их решения, вводя «интеллект» как механизм, необходимый для решения.
В конечном итоге оказалось, что к традиционным задачам ИИ стали относить довольно много задач. Например, это понимание машиной естественного языка, т.е. вопрос-ответные системы и доступ к базам данных на естественном языке, перевод с одного языка на другой, анализ изображений объёмных (3-d) сцен, доказательство теорем, игры, базы данных, базы знаний и др. [6]
Теперь вкратце рассмотрим наиболее активно развиваемые подходы и области применения ИИ – в порядке убывания их популярности. Надо отметить, что меньшая популярность нередко связана не столько с потенциалом технологии, сколько с отдаленностью перспектив её прикладной реализации (например, крайне высокий потенциал киберзаводов пока не вызывает серьезного интереса из-за наличия множества нерешенных задач по их управлению).
Нейронные сети
Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей – финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идёт усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.
Эволюционные вычисления
На развитие сферы эволюционных вычислений (ЭВ) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удаётся применять научные достижения из области цифровых автоматов. Другой аспект ЭВ – использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития – выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. Отдельно стоит отметить социальные аспекты – неизвестно как общество будет на практике относиться к таким сообществам интеллектуальных программ.
Нечеткая логика
Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах.
Обработка изображений
Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.