Смекни!
smekni.com

Этапы разработки программ. Тестирование и отладка. Документирование программ (стр. 2 из 3)

1. необходимой частью каждого теста должно являться описание ожидаемых результатов работы программы, чтобы можно было быстро выяснить наличие или отсутствие ошибки в ней;

2. следует по возможности избегать тестирования программы ее автором, т.к. кроме уже указанной объективной сложности тестирования для программистов здесь присутствует и тот фактор, что обнаружение недостатков в своей деятельности противоречит человеческой психологии (однако отладка программы эффективнее всего выполняется именно автором программы);

3. по тем же соображениям организация - разработчик программного обеспечения не должна “единолично ” его тестировать (должны существовать организации, специализирующиеся на тестировании программных средств);

4. должны являться правилом доскональное изучение результатов каждого теста, чтобы не пропустить малозаметную на поверхностный взгляд ошибку в программе;

5. необходимо тщательно подбирать тест не только для правильных (предусмотренных ) входных данных, но и для неправильных (непредусмотренных);

6. при анализе результатов каждого теста необходимо проверять, не делает ли программа того, что она не должна делать;

7. следует сохранять использованные тесты (для повышения эффективности повторного тестирования программы после ее модификации или установки у заказчика);

8. тестирования не должно планироваться исходя из предположения, что в программе не будут обнаружены ошибки (в частности, следует выделять для тестирования достаточные временные и материальные ресурсы);

9. следует учитывать так называемый “принцип скопления ошибок” : вероятность наличия не обнаруженных ошибок в некоторой части программы прямо пропорциональна числу ошибок, уже обнаруженных в этой части;

10. следует всегда помнить, что тестирование - творческий процесс, а не относиться к нему как к рутинному занятию.

Существует два основных вида тестирования: функциональное и структурное. При функциональном тестировании программа рассматривается как “черный ящик” (то есть ее текст не используется). Происходит проверка соответствия поведения программы ее внешней спецификации. Возможно ли при этом полное тестирование программы? Очевидно, что критерием полноты тестирования в этом случае являлся бы перебор всех возможных значений входных данных, что невыполнимо.

Поскольку исчерпывающее функциональное тестирование невозможно, речь может идти о разработки методов, позволяющих подбирать тесты не “вслепую”, а с большой вероятностью обнаружения ошибок в программе. При структурном тестировании программа рассматривается как “белый ящик” (т.е. ее текст открыт для пользования). Происходит проверка логики программы. Полным тестированием в этом случае будет такое, которое приведет к перебору всех возможных путей на графе передач управления программы (ее управляющем графе). Даже для средних по сложности программ числом таких путей может достигать десятков тысяч.

Таким образом, ни структурное, ни функциональное тестирование не может быть исчерпывающим. Рассмотрим подробнее основные этапы тестирования программных комплексов. В тестирование многомодульных программных комплексов можно выделить четыре этапа:

1) тестирование отдельных модулей;

2) совместное тестирование модулей;

3) тестирование функций программного комплекса (т.е. поиск различий между разработанной программой и ее внешней спецификацией );

4) тестирование всего комплекса в целом (т.е. поиск несоответствия созданного программного продукта, сформулированным ранее целям проектирования, отраженным обычно в техническом задании).

На первых двух этапах используются, прежде всего, методы структурного тестирования, т.к. на последующих этапах тестирования эти методы использовать сложнее из-за больших размеров проверяемого программного обеспечения; последующие этапы тестирования ориентированы на обнаружение ошибок различного типа, которые не обязательно связаны с логикой программы.

1.2.3.1 Структурное тестирование

Поскольку исчерпывающее структурное тестирование невозможно, необходимо выбрать такие критерии его полноты, которые допускали бы их простую проверку и облегчали бы целенаправленный подбор тестов.

Наиболее слабым из критериев полноты структурного тестирования является требование хотя бы однократного выполнения (покрытия) каждого оператора программы. Более сильным критерием является так называемый критерий С1: каждая ветвь алгоритма (каждый переход) должна быть пройдена (выполнена) хотя бы один раз.

Использование критерия покрытия условий может вызвать подбор тестов, обеспечивающих переход в программе, который пропускается при использовании критерия С1 (например, в программе на языке Паскаль, использующей конструкцию цикла WHILE х AND y DO... , применение критерия покрытия условий требует проверки обоих вариантов выхода из цикла: NOT x и NOT y). С другой стороны покрытие условий может не обеспечивать покрытия всех переходов.

Например, конструкция IF A AND B THEN... требует по критерию покрытия условий двух тестов (например, A=true, B=false и A=false, B=true), при которых может не выполняться оператор, расположенный в then - ветви оператора if. Практически единственным средством, предоставляемым современными системами программирования, является возможность определения частоты выполнения различных операторов программы. Но с помощью этого инструмента поддержки тестирования можно проверить выполнение только слабейшего из критериев полноты - покрытие всех операторов. Правда, с помощью этого же инструмента можно проверить и выполнение критерия С1. Но для этого предварительно текст программы должен быть преобразован таким образом, чтобы все конструкции условного выбора (IF, CASE или SWITCH) содержали ветви ELSE или DEFAULT, хотя бы и пустые. В этом случае все ветви алгоритма, не выполнявшиеся на данном тесте, будут “видимы” из таблицы частоты выполнения операторов преобразованной программы.

Актуальной остается задача создания инструментальных средств, позволяющих:

- накапливать информации о покрытых и непокрытых ветвях для всех использованных тестов;

- выделять разработчику еще не покрытые при тестировании участки программы, облегчая выбор следующих тестов;

- поддерживать более мощные критерии полноты структурного тестирования.

1.2.3.2 Совместимое тестирование модулей

Известны два подхода к совместному тестированию модулей: пошаговое и монолитное тестирование. При монолитном тестировании сначала по отдельности тестируются все модули программного комплекса, а затем все они объединяются в рабочую программу для комплексного тестирования. При пошаговом тестировании каждый модуль для своего тестирования подключается к набору уже проверенных модулей.

В первом случае для автономного тестирования каждого модуля требуется модуль – драйвер (то есть вспомогательный модуль, имитирующий вызов тестируемого модуля и один или несколько модулей - заглушек то есть вспомогательных модулей, имитирующих работу модулей, вызываемых из тестируемого). При пошаговом тестировании модули проверяются не изолированно друг от друга, поэтому требуются либо только драйверы, либо только заглушки. При сравнении пошагового и монолитного тестирования можно отметить следующие преимущества первого подхода:

- меньшая трудоемкость (при монолитном тестировании требуются 5 драйверов и 5 заглушек; при пошаговом тестировании требуются или только 5 драйверов - если модули подключаются “снизу вверх ”, - или только 5 заглушек - если модули подключаются “сверху вниз”);

- более раннее обнаружение ошибок в интерфейсах между модулями (их сборка начинается раньше, чем при монолитном тестировании);

- легче отладка, то есть локализация ошибок (они в основном связаны с последним из подключенных модулей);

- более совершенные результаты тестирования (более тщательная проверка совместного использования модулей).

При использовании пошагового тестирования возможны две стратегии подключения модулей: нисходящая и восходящая.

Нисходящее тестирование начинается с главного (или верхнего) модуля программы, а выбор следующего подключаемого модуля происходит из числа модулей, вызываемых из уже протестированных.

Одна из основных проблем, возникающих при нисходящем тестировании, - создание заглушек. Другая проблема, которую необходимо решать при нисходящем тестировании, - форма представления тестов в программе, так как, как правило, главный модуль получает входные данные не непосредственно, а через специальные модули ввода, которые при тестировании сначала заменяются заглушками. Для передачи в главный модуль разных тестов нужно или иметь несколько разных заглушек, или записать эти тесты в файл во внешней памяти и с помощью заглушки считывать их. Поскольку после тестирования главного модуля процесс проверки может продолжаться по-разному, следует придерживаться следующих правил:

a) модули, содержащие операции ввода-вывода, должны подключаться к тестированию как можно раньше;

b) критические (т.е. наиболее важные) для программы в целом модули также должны тестироваться в первую очередь.

Основные достоинства нисходящего тестирования: уже на ранней стадии тестирования есть возможность получить работающий вариант разрабатываемой программы; быстро могут быть выявлены ошибки, связанные с организацией взаимодействия с пользователем.

Проблемы, которые могут возникать при нисходящем тестировании: появляется соблазн совмещения нисходящего проектирования с тестированием, что, как правило, неразумно, т.к. проектирование - процесс итеративный и в нем неизбежен возврат на верхние уровни и исправление принятых ранее решений, что обесценивает результаты уже проведенного тестирования; может возникнуть желание перейти к тестированию модуля следующего уровня до завершения тестирования предыдущего по объективным причинам (необходимости создания нескольких версий заглушек, использования модулями верхнего уровня ресурсов модулей нижних уровней).