Воронежский институт высоких технологий – АНОО ВПО
факультет заочного обучения
контрольная работа
по дисциплине информатика
Воронеж 2010
1. Кодирование различных типов информации
С помощью набора битов, можно представить любое число и любой знак. В информационных документах широко используются не только русские, но и латинские буквы, цифры, математические знаки и другие специальные знаки, всего их количество составляет примерно 200-250 символов. Поэтому для кодировки всех указанных символов используется восьмиразрядная последовательность цифр 0 и 1. Таким образом, текстовая информация кодируется с помощью кодовой таблицы.
Кодовая таблица – это внутреннее преставление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII – Американский стандартный код для обмена информацией. Для хранения двоичного кода одного символа выделен 1 байт = 8 бит.
Следует отметить, что указанный способ кодирования используется тогда, когда к нему не предъявляются дополнительные требования, такие как необходимость указать на возникшую ошибку, исправление ошибки, секретность информации. При специальном кодировании коды получаются длиннее, чем в указанной таблице.
Наиболее просто кодируется числовая информация – она переводится в двоичную систему исчисления.
Для представления графической информации в двоичной форме используется так называемый поточечный способ. На первом этапе вертикальными и горизонтальными линиями делят изображение. Чем больше при этом получилось квадратов, тем точнее будет передана информация о картинке. Как известно из физики, любой цвет может быть представлен в виде суммы различной яркости зеленого, синего, красного цветов. Поэтому информация о каждой клетке должна содержать кодировку значения яркости и количеств зеленого, синего и красного компонентов. Таким образом кодируется растровое изображение – изображение, разбитое на отдельные точки. Объем растрового изображения определяется умножением количества точек на рисунке на информационный объем одной точки, который зависит от количества возможных цветов отображения (для черно-белого изображения информационный объем одной точки равен 1 биту и кодируется двумя цифрами – 0 или 1). Разные цвета и их оттенки получаются за счет наличия или отсутствия трех основных цветов – красного, синего, зеленого и их яркости. Каждая точка на экране кодируется с помощью 4 битов.
Векторное изображение кодируется разбиением рисунка на элементарные отрезки, геометрические фигуры и дуги. Положение этих элементарных объектов определяется координатами точек. Для каждой линии указывается ее тип (сплошная, пунктирная, штрих- пунктирная ), толщина и цвет. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.
Звуковая информация может быть представлена последовательностью элементарных звуков и пауз между ними. Вывод звуков из компьютера осуществляется синтезатором речи, который считывает из памяти хранящийся код звука. Речь человека имеет большое разнообразие оттенков, поэтому каждое произнесенное слово должно сравниваться с предварительно занесенным в память компьютера эталоном, и при их совпадении происходит его распознавание и запись.
2. Состав системного блока
Системный блок (рис. 1) – основная часть компьютера.
Рис. 1 - Системный блок компьютера
Он состоит из металлического корпуса, в котором располагаются основные компоненты компьютера. С ним соединены кабелями клавиатура, мышь и монитор. Внутри системного блока расположены:
микропроцессор, который выполняет все поступающие команды, производит вычисления и управляет работой всех компонентов компьютера;
оперативная память, предназначенная для временного хранения программ и данных;
системная шина, осуществляющая информационную связь между устройствами компьютера;
материнская плата (рис. 2), на которой находятся микропроцессор, системная шина, оперативная память, коммуникационные разъемы, микросхемы управления различными компонентами компьютера, счётчик времени, системы индикации и защиты;
Рис. 2 - Материнская плата
блок питания (рис. 3), преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;
вентиляторы для охлаждения греющихся элементов;
Рис. 3 - Блок питания
устройства внешней памяти, к которым относятся накопители на гибких и жестких магнитных дисках, дисковод для CD и DVD-дисков, предназначенные для длительного хранения информации.
Аппаратной основой системного блока является материнская плата - самостоятельный элемент, который управляет внутренними связями и с помощью системы прерываний взаимодействует с внешними устройствами. На материнской плате расположены все важнейшие микросхемы.
Персональные компьютеры делятся на стационарные и портативные. Стационарные обычно устанавливаются рабочем столе. Портативные компьютеры делятся на следующие категории:
переносные (portable), которые имеют небольшую массу и габариты и поддаются транспортировке одним человеком;
наколенные (laptop), выполненные в виде дипломата;
блокнотные (notebook), имеющие габариты большого блокнота;
карманные (pocket), которые помещаются в карман.
В соответствии с вышеприведенной классификацией, системные блоки могут иметь следующие типы корпусов:
Desktop
Tower
Notebook
3. Топология сетей
Выделяют следующие основные топологии сетей: шина, кольцо, звезда, дерево.
Топология типа общая ши́на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет - кому адресовано сообщение и если ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные.
В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, которая увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.
Шине не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае остаются две полностью работоспособных шины. Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств - Терминаторов.
Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Таким образом при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами - повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.
Достоинства:
Небольшое время установки сети;
Дешевизна (требуется меньше кабеля и сетевых устройств);
Простота настройки;
Выход из строя рабочей станции не отражается на работе сети.
Недостатки:
Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
Сложная локализация неисправностей;
С добавлением новых рабочих станций падает производительность сети.
Кольцо́ - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.
Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.