Смекни!
smekni.com

Проектирование устройств фильтрации (стр. 4 из 6)

Рисунок 3.1 АЧХ фильтра Чебышева первого рода 4-го и 5-го порядков соответственно.

ФЧХ фильтра Чебышева изображены на рисунке 3.1.2.Из рисунка видно,что полоса пропускания становится более нелинейной при увеличении порядка фильтра. Обусловлено это колебательным видом АЧХ.[5]

Рисунок 3.2 ФЧХ фильтра Чебышева первого рода 4-го и 5-го порядков соответственно

ХГВЗ фильтра Чебышева изображены на рисунке 3.1.3.В полосе пропускания при увеличении порядка фильтра отклоняется от идеальной функции . Это приводит к увеличению вклада фазовых искажений в общее искажение формы выходного сигнала.


Рисунок 3.3 ХГВЗ фильтра Чебышева первого рода 4-го и 5-го порядков соответственно

ХРЗ фильтра Чебышева на рисунке 3.1.4 имеет равноволновый характер в полосе пропускания и монотонный характер в переходной области и полосе задерживания. Количество колебаний в полосе пропускания возрастает с увеличением порядка фильтра.[5]


Рисунок 3.4 ХРЗ фильтра Чебышева

Временные характеристики фильтра Чебышева I рода (рисунок 3.1.5 )— импульсная переходная функция и переходная функция Импульсная переходная функция представляет собой реакцию фильтра на входной сигнал в виде дельта-функции Дирака, а переходная функция — реакцию на входное воздействие в виде единичной функции Хевисайда.

С увеличением порядка фильтра увеличиваются длительность переходного процесса, амплитуда колебаний (включая и амплитуду первого выброса), уменьшается размах основного лепестка импульсной характеристики при одновременном увеличении его длительности по уровню 0,5. Подобное поведение временных характеристик нежелательно при обработке импульсных сигналов, например телевизионных, поскольку при этом на изображении возникают окан-товки на яркостных переходах, уменьшается контрастность мелких деталей изображения.[5]


Рисунок 3.5 Импульсная переходная функция и переходная функция фильтра Чебышева

3.2 АППРОКСИМАЦИЯ ЧЕБЫШЕВА ИНВЕРСНАЯ (ВТОРОГО РОДА)

При аппроксимации АЧХ многочленами Чебышева задавалась допустимая неравномерность АЧХ фильтров в полосе пропускания при помощи параметра εp . Однако можно также задать требуемый уровень подавления в полосе заграждения при помощи параметра

, тогда получим фильтры Чебышева второго рода или как их еще называют инверсные фильтры Чебышева. Аппроксимирующая функция в этом случае задается выражением
, а квадрат модуля АЧХ представляется в виде:

(3.5)

На рисунках показаны аппроксимирующая функция

и квадрат модуля АЧХ фильтра Чебышева второго рода порядка N=4 при
(уровень подавления в полосе заграждения равен
)

Рисунок 3.3: Аппроксимирующая функция фильтра Чебышева второго рода 4-го порядка

Рисунок 3.4: Квадрат модуля АЧХ фильтра Чебышева второго рода 4-го порядка

Если нормированный фильтр Чебышева первого рода на частоте

«пропускает» сигнал, т.к.
Близко к единице (0 дБ), то нормированный фильтр Чебышева второго рода на частоте
«подавляет» сигнал, т.к.
.[4]

Фильтры Чебышева второго рода целесообразно использовать для полосозаграждающих фильтров с заданным коэффициентом подавления.[4]


4. ВЫВОД ПЕРЕДАТОЧНОЙ ФУНКЦИИ ФИЛЬТРА ПО СТРУКТУРЕ РАУХА

В варианте данной курсовой работы предложено спроектировать полосовой фильтр восьмого порядка, используя структуру Рауха.

С целью вывода передаточной функции полосового фильтра по структуре Рауха рассмотрим фильтры второго порядка, которые будут соединены каскадно:

К2(р)
К3(р)
К4(р)

Рис.4.1 Структурная схема фильтра восьмого порядка

Построим принципиальную схему полосового фильтра восьмого порядка на операционном усилителе. Полосовой фильтр пропускает составляющие сигнала с частотами, лежащими между левой и правой частотой среза, а остальные задерживает, исходя из этого присутствие разделительных конденсаторов в ветвях схемы необходимо. Чтобы определить в какой именно ветви они должны стоять, сначала во все ветви поставим проводимости.

Рис.4.2 – Функциональная схема структуры Рауха второго порядка.

Найдём передаточную функцию каждого каскада.

(4.1)

Применим законы Кирхгофа:

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Ток i4 протекает через проводимость Y4 и втекает в ветвь с проводимостью Y5 без потерь. Подставим (4.7), (4.8), (4.6) в (4.2), а затем получившееся выражение подставим в (4.5):

(4.10)

Подставим (4.4) в (4.10) и преобразуем, чтобы получить окончательное выражение для передаточной функции:

(4.11)

(4.12)

Общая же формула передаточной характеристики полосового фильтра имеет вид:

(4.13)

Анализируя выражения передаточной характеристики фильтра, определим типы проводимостей для обеспечения требуемой степени p. Так, сделаем вывод о том, что проводимости Y1, Y2 и Y5 должны заменить резисторы, а проводимости Y3 и Y4 – емкости:

(4.14)

Подставив (4.14) в (4.12) и преобразовав к виду (4.13), получим:

(4.15)

Таким образом, коэффициенты нормированного ФНЧ-прототипа для одного звена второго порядка можно представить следующим образом:

С учётом (4.14) построим принципиальную схему фильтра.

Рис.4.3 – Функциональная схема структуры Рауха второго порядка.

Данное функциональное звено представляет собой активный фильтр второго порядка, построенный на основе операционного усилителя.


5 МОДЕЛИРОВАНИЕ ФИЛЬТРА НА ФУНКЦИОНАЛЬНОМ УРОВНЕ В СИСТЕМЕ MATHCAD В ЧАСТОТНОЙ И ВРЕМЕННОЙ ОБЛАСТЯХ (РАСЧЕТ АЧХ, ФЧХ, ХРЗ, ХГВЗ, ИХ, ПХ В НОРМИРОВАННОМ И ДЕНОРМИРОВАННОМ ВИДАХ)

Для моделирования на функциональном уровне будем использовать MathCAD .

Операторную передаточную функцию можно записать в следующем виде: