Смекни!
smekni.com

Моделирование рассуждений в ИИС (стр. 1 из 4)

Введение

В бурно развивающейся науке «искусственный интеллект» скрещиваются и переплетаются проблемы, которые давно волнуют специалистов самых разных научных направлений. Психологи и программисты, философы и инженеры, лингвисты и математики, биологи и кибернетики – все они в той или иной мере соприкасаются с проблемами искусственного интеллекта и участвуют в их решении.

Интерес к моделированию рассуждений не случаен. Интеллектуальные системы создаются для того, чтобы овеществлять в технических устройствах знания и умения, которыми обладают люди, чтобы решать задачи, относимые к области творческой деятельности человека, не хуже людей.

В интеллектуальные системы, особенно в те, которые получили название экспертных систем и предназначены для помощи специалистам в решении их задач, необходимо вложить знание о том, как мы рассуждаем, когда ищем решение. И если не говорить о математике и еще нескольких науках, опирающихся на точные и формальные модели, то наши схемы рассуждений – это тот самый аппарат, с помощью которого осуществляется значительная доля творческой деятельности.

Когда специалисты в области моделирования человеческих рассуждений начали свою работу, они столкнулись с тем, что человеческие рассуждения представляют собой нечто загадочное и детально никем не изучались. Казалось бы, в логике – науке о рассуждениях – за многие века ее существования должны были накопиться горы фактов о том, как люди делают выводы на основании знаний.

Но, как выяснилось, логиков традиционно интересует лишь чрезвычайно узкий класс рассуждений, которые можно было бы назвать строгими, а остальные многочисленные формы человеческих рассуждений они не включают в свою компетенцию.

Психология мышления также весьма сдержанно относится к тому, как формируются у человека схемы рассуждений и как он ими пользуется в конкретных ситуациях. Лингвисты, которые много занимались логическими проблемами естественного языка, остались далеки от понимания того, как носитель этого языка строит на нем свои схемы принятия решений.

Цель курсовой работы ― рассмотреть модели рассуждений, их виды и цель их создания.

Актуальность темы моделирования рассуждений представляют интерес для специалистов по интеллектуальным системам и искусственному интеллекту.


Глава 1. Знания и их представление

Языки, предназначенные для описания предметных областей называются языками представления знаний. Универсальным языком представления знаний является естественный язык. Однако использование естественного языка в системах машинного представления знаний наталкивается на ряд препятствий, главным из которых является отсутствие формальной семантики естественного языка.

Системы, основанные на знаниях - это системы программного обеспечения, основными структурными элементами которых являются база знаний и механизм логических выводов. В первую очередь к ним относятся экспертные системы, способные диагностировать заболевания, оценивать потенциальные месторождения полезных ископаемых, осуществлять обработку естественного языка, распознавание речи и изображений и т.д. Экспертные системы являются первым шагом в практической реализации исследований в области ИИ. В настоящее время они уже используются в промышленности.

Экспертная система - это вычислительная система, в которую включены знания специалистов о некоторой конкретной проблемной области и которая в пределах этой области способна принимать экспертные решения. Структурные элементы, составляющие систему, выполняют следующие функции. База знаний - реализует функции представления знаний в конкретной предметной области и управление ими. Механизм логических выводов - выполняет логические выводы на основании знаний, имеющихся в базе знаний. Пользовательский интерфейс - необходим для правильной передачи ответов пользователю, иначе пользоваться системой крайне неудобно.

Модуль приобретения знаний - необходим для получения знаний от эксперта, поддержки базы знаний и дополнения ее при необходимости. Модуль ответов и объяснений - формирует заключение экспертной системы и представляет различные комментарии, прилагаемые к заключению, а также объясняет мотивы заключения.

Перечисленные структурные элементы являются наиболее характерными, хотя в реальных экспертных системах их функции могут быть соответствующим образом усилены или расширены.

Знания в базе знаний представлены в конкретной форме и организация базы знаний позволяет их легко определять, модифицировать и пополнять. Решение задач с помощью логического вывода на основе знаний хранящихся в базе знаний, реализуется автономным механизмом логического вывода. Хотя оба эти компонента системы с точки зрения ее структуры являются независимыми, они находятся в тесной связи между собой и определение модели представления знаний накладывает ограничения на выбор соответствующего механизма логических выводов. Таким образом, при проектировании экспертных систем необходимо анализировать оба указанных компонента. Чтобы манипулировать знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. К основным моделям представления знаний относятся:

· логические модели;

· продукционные модели;

· сетевые модели;

· фреймовые модели.

1.1 Логические модели

Логическая (предикатная) модель представления знаний основана на алгебре высказываний и предикатов, на системе аксиом этой алгебры и ее правилах вывода. Из предикатных моделей наибольшее распространение получила модель предикатов первого порядка, базирующаяся на термах (аргументах предикатов - логических констант, переменных, функций), предикатах (выражениях с логическими операциями).

Пример. Возьмем утверждение: "Инфляция в стране превышает прошлогодний уровень в 2 раза". Это можно записать в виде логической модели: r(InfNew, InfOld, n), где r(x,y) - отношение вида "x=ny", InfNew - текущая инфляция в стране, InfOld - инфляция в прошлом году. Тогда можно рассматривать истинные и ложные предикаты, например, r(InfNew, InfOld, 2)=1, r(InfNew, InfOld, 3)=0 и т.д. Очень полезные операции для логических выводов - операции импликации, эквиваленции.

Логические модели удобны для представления логических взаимосвязей между фактами, они формализованы, строги (теоретические), для их использования имеется удобный и адекватный инструментарий, например, язык логического программирования Пролог.

В основе моделей такого типа лежит понятие формальной системы. Постановка и решение любой задачи связаны с определенной предметной областью. Так, решая задачу составления расписания обработки деталей на металлорежущих станках, мы вовлекаем в предметную область такие объекты, как конкретные станки, детали, интервалы времени и общие понятия "станок", "деталь", "тип станка" и т.д.

Все предметы и события, которые составляют основу общего понимания необходимой для решения задачи информации, называются предметной областью. Мысленно предметная область представляется состоящей из реальных объектов, называемых сущностями. Сущности предметной области находятся в определенных отношениях друг к другу. Отношения между сущностями выражаются с помощью суждений. В языке (формальном или естественном) суждениям отвечают предложения.

Для представления математического знания в математической логике пользуются логическими формализмами - исчислением высказываний и исчислением предикатов. Эти формализмы имеют ясную формальную семантику и для них разработаны механизмы вывода. Поэтому исчисление предикатов было первым логическим языком, который применяли для формального описания предметных областей, связанных с решением прикладных задач.

Описания предметных областей, выполненные в логических языках, называются логическими моделями. Логические модели, построенные с применением языков логического программирования, широко применяются в базах знаний и экспертных системах.

1.2 Продукционные модели

Продукционная модель представления знаний является развитием логических моделей в направлении эффективности представления и вывода знания.

Продукция – это выражение, содержащее ядро, интерпретируемое фразой «Если А, то В», имя, сферу применения, условие применимости ядра и постусловие, представляющее собой процедуру, которую следует выполнить после успешной реализации ядра. Все части, кроме ядра, являются необязательными.

Взаимосвязанный набор продукций образует систему. Основная проблема вывода знания в системе продукций является выбор для анализа очередной продукции. Конкурирующие продукции образуют фронт.

Продукции (наряду с сетевыми моделями) являются наиболее популярными средствами представления знаний в системах ИИ. Импликация может истолковываться в обычном логическом смысле как знак логического следования B из истинного А. Возможны и другие интерпретации продукции, например А описывает некоторое условие, необходимое, чтобы можно было совершить действие B.

Если в памяти системы хранится некоторый набор продукций, то они образуют систему продукций. В системе продукций должны быть заданы специальные процедуры управления продукциями, с помощью которых происходит актуализация продукций и выполнение той или иной продукции из числа актуализированных.

В состав системы продукций входит база правил (продукций), глобальная база данных и система управления. База правил - это область памяти, которая содержит совокупность знаний в форме правил вида ЕСЛИ - ТО. Глобальная база данных - область памяти, содержащая фактические данные (факты). Система управления формирует заключения, используя базу правил и базу данных. Существуют два способа формирования заключений - прямые выводы и обратные выводы.

В прямых выводах выбирается один из элементов данных, содержащихся в базе данных, и если при сопоставлении этот элемент согласуется с левой частью правила (посылкой), то из правила выводится соответствующее заключение и помещается в базу данных или исполняется действие, определяемое правилом, и соответствующим образом изменяется содержимое базы данных. В обратных выводах процесс начинается от поставленной цели. Если эта цель согласуется с правой частью правила (заключением), то посылка правила принимается за подцель или гипотезу. Этот процесс повторяется до тех пор, пока не будет получено совпадение подцели с данными. При большом числе продукций в продукционной модели усложняется проверка непротиворечивости системы продукций, т.е. множества правил. Поэтому число продукций, с которыми работают современные системы ИИ, как правило, не превышают тысячи.