Смекни!
smekni.com

Структурные автоматы (стр. 1 из 6)

СОДЕРЖАНИЕ

Введение

1. Основные понятия. Канонический метод структурного синтеза автоматов. Теорема Глушкова о структурной полноте

2. Основные этапы канонического метода структурного синтеза

2.1 Кодирование алфавитов автомата

2.2 Выбор элементов памяти автомата

2.3 Выбор функционально-полной системы логических элементов

2.4 Построение уравнений булевых функций возбуждения и выходов автомата

2.5 Построение функциональной схемы автомата

3. Пример канонического метода структурного синтеза

4. Элементы памяти

4.1 Элементы памяти с одним информационным входом

4.2 Элементы памяти с двумя информационными входами

4.3 Матрица переходов элемента памяти

5. Кодирование состояний и выходов автомата и сложность

комбинационных схем

6. Обеспечение устойчивости функционирования цифровых автоматов. Гонки в автоматах

6.1 Методы устранения гонок в автоматах

Выводы

Литература

Введение

Тема курсовой работы «Структурные автоматы» по дисциплине «Прикладная теория управления автоматами».

Цель работы – рассмотреть:

- основные понятия структурных автоматов;

- канонический метод структурного синтеза автоматов;

- теорему Глушкова о структурной полноте;

- основные этапы канонического метода структурного синтеза;

- примеры канонического метода структурного синтеза;

- кодирование состояний и выходов автомата и сложность комбинационных схем;

- обеспечение устойчивости функционирования цифровых автоматов;

- гонки в автоматах;

- методы устранения гонок в автоматах и др.


1. Основные понятия. Канонический метод структурного синтеза автоматов. Теорема Глушкова о структурной полноте

Вслед за этапом абстрактного синтеза автоматов, заканчивающимся минимизацией числа состояний, следует этап структурного синтеза, цепью которого является построение схемы, реализующей автомат из логических элементов заданного типа.

Если абстрактный автомат был лишь математической моделью дискретной системы, то в структурном автомате учитывается структура входных и выходных сигналов автомата, а также его внутреннее устройство на уровне структурных схем. Структурным синтезом занимается структурная теория автоматов, основной задачей которой является нахождение общих приемов построения структурных схем автоматов на основе композиции элементарных автоматов, принадлежащих к заранее заданному конечному числу типов.

Под композицией элементарных автоматов в общем случае понимается следующее.

Пусть заданы элементарные автоматы S1,...,Sk. Произведем объединение элементарных автоматов в систему совместно работающих автоматов. Введем в рассмотрение некоторое конечное множество узлов, называемых внешними входными и внешними выходными узлами. Эти узлы отличаются от узлов рассматриваемых элементарных автоматов, которые носят название внутренних. Композиция автомата состоит в том, что в полученной системе элементарных автоматов S1,...,Sk и внешних узлов производится отождествление некоторых узлов (как внешних, так и внутренних). С точки зрения совместной работы системы автоматов смысл операции отождествления узлов состоит в том, что элементарный сигнал, попадающий на один из узлов, входящих в множество отождествляемых между собой узлов, попадает тем самым на все узлы этого множества, После проведенных отождествлений узлов система автоматов превращается в так называемую схему (сеть) автоматов. Будем считать, что автоматы, входящие в схему автоматов, работают совместно, если в каждый момент автоматного времени на все внешние входные узлы подается набор входных сигналов (структурный входной сигнал схемы) и со всех внешних выходных узлов снимается набор выходных сигналов (структурный выходной сигнал).

В структурной теории как входные так и выходные каналы считаются состоящими из элементарных входных (выходных) каналов. По всем элементарным входным (выходным) каналам могут передаваться только элементарные сигналы.

Рисунок 1- Структурный автомат

Набор возможных значений сигналов, подаваемых на один внешний входной (выходной) узел, называется структурным входным (выходным) алфавитом автомата. Алфавит должен быть конечным.

Входной и выходной сигналы задаются конечными упорядоченными наборами элементарных сигналов, называемыми векторами, а составляющие их элементарные сигналы - компоненты векторов. Число компонентов вектора - это размерность алфавита.

Например, X={x1, x2, x3, x4, x5} - входной алфавит абстрактного автомата.

Структурный входной алфавит, размерность которого равна трем:

X1=000, x2=001, x3=010, x4=011, x5= 100.

Векторное представление входных и выходных сигналов называется структурным входным выходным сигналом, соответственно.

Предполагается, что все входящие в композицию автоматы имеют один и тот же структурный алфавит и работают в одном и том же автоматном времени. В настоящее время наиболее распространенным структурным алфавитом является двоичный, что объясняется простотой его представления в современных элементах и приборах. Кроме того, для двоичного алфавита наиболее разработан аппарат булевых функций, позволяющий производить многие операции над схемой формально. Поэтому в дальнейшем при решении задач структурного синтеза автоматов будет использоваться в основном двоичный, структурный алфавит.

Предположим, что в каждый момент автоматного времени структурный выходной сигнал схемы однозначно определяется поступившей к этому времени конечной последовательностью структурных входных сигналов, начальными состояниями входящих в схему автоматов и сделанными при построении схемы отождествлениями узлов. В этом случае построенную схему будем рассматривать как некоторый автомат S, а саму схему назовем структурной схемой этого автомата.

Построенный таким образом автомат S есть результат композиции элементарных автоматов S1,...,Sk. В отличие от абстрактного C-автомата, имеющего один входной и два выходных канала, на которые поступают сигналы во входном и выходных алфавитах автомата, структурный автомат имеет входные и выходные каналы, на которых появляются сигналы в структурном алфавите автомата. В случае двоичного алфавита каждый входной и выходные сигналы абстрактного автомата могут быть закодированы векторами различной длины соответственно, компоненты которых принимают два значения - нуль и единицу.

На этапе структурного синтеза предварительно выбираются элементарные автоматы, из которых затем путем их композиции строится структурная схема полученного на этапе абстрактного синтеза автомата Мили, Мура или C-автомата. Если решение задачи структурного синтеза существует, говорят, что заданная система автоматов структурно полна.

В настоящее время нет сколько-нибудь эффективных методов (существенно более простых, чем метод перебора всех вариантов) решения основной задачи структурного синтеза при любом наборе структурно полных систем элементарных автоматов. Поэтому обычно применяется так называемый канонический метод структурного синтеза, при котором используются элементарные автоматы некоторого специального вида: автоматы с памятью, имеющие более одного состояния, и автоматы без памяти - с одним состоянием. Автоматы первого класса носят название элементов памяти, а автоматы второго класса - комбинационных или логических элементов.

Теоретическим обоснованием канонического метода структурного синтеза автоматов является доказанная в теорема о структурной полноте (теорема Глушкова):

Всякая система элементарных автоматов, которая содержит автомат Мура с нетривиальной памятью, обладающий полной системой переходов и полной системой выходов, и какую-либо функционально полную систему логических элементов, является структурно полной.

Существует общий конструктивный прием (канонический метод структурного синтеза), позволяющий в рассматриваемом случае свести задачу структурного синтеза произвольных автоматов к задаче синтеза комбинационных схем.

Результатом канонического метода структурного синтеза является система логических уравнений, выражающая зависимость выходных сигналов автомата (функции выходов автомата) и сигналов, подаваемых на входы запоминающих элементов, от сигналов, приходящих на вход всего автомата в целом, и сигналов, снимаемых с выхода элементов памяти (функции возбуждения элементов памяти автомата). Эти уравнения называютсяканоническими.

Для правильной работы схем, очевидно, нельзя разрешать, чтобы сигналы на входе запоминающих элементов непосредственно участвовали в образовании выходных сигналов, которые по цепям обратной связи подавались бы в тот же самый момент времени на эти входы. В связи с этим запоминающими элементами должны быть не автоматы Мили, а автоматы Мура (см. уравнения функционирования этих автоматов).

Таким образом, структурно полная система элементарных автоматов должна содержать хотя бы один автомат Мура. В то же время для синтеза любых автоматов с минимальным числом элементов памяти необходимо в качестве таких элементов выбирать автоматы Мура, имеющие полную систему переходов и полную систему выходов - так называемые полные автоматы.

Рассмотрим полноту автоматов памяти на примере автомата Мура. (табл. 1.) Полнота системы переходов означает, что для любой пары состояний (am,…,аs) автомата найдется входной сигнал, переводящий первый элемент этой пары am во второй - as т. е. в таком автомате в каждом столбце таблицы переходов должны встречаться все состояния автомата. Полнота системы выходов автомата Мура состоит в том, что каждому состоянию автомата поставлен в соответствие свой особый выходной сигнал, отличный от выходных сигналов других состояний.