Вступление
Глобальная сеть- совокупность компьютеров, расположенных на больших расстояниях друг от друга, а также система каналов передачи связи: средств коммуникации (переключения), обеспечивающих соединение пользовательских коммуникационных систем и обмен данными между ними.
Глобальные сети (WideAreaNetworks, WAN) создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам.
Интернет - мировая глобальная компьютерная сеть. Она составлена из разнообразных компьютерных сетей, объединенных стандартными соглашениями о способах обмена информацией и единой системой адресации. Интернет использует протоколы семейства TCP/IP. Они хороши тем, что обеспечивают относительно дешевую возможность надежно и быстро передавать информацию даже по не слишком надежным линиям связи, а также строить программное обеспечение, пригодное для работы на любой аппаратуре. Система адресации (URL-адреса) обеспечивает уникальными координатами каждый компьютер (точнее, практически каждый ресурс компьютера) и каждого пользователя Интернета, создавая возможность взять именно то, что нужно, и передать именно туда, куда нужно.
1. Историческая справка
Около 20 лет назад Министерство Обороны США создало сеть,– она называлась ARPAnet. ARPAnet была экспериментальной сетью, – она создавалась для поддержки научных исследований в военно-промышленной сфере, – в частности, для исследования методов построения сетей, устойчивых к частичным повреждениям, получаемым, например, при бомбардировке авиацией и способных в таких условиях продолжать нормальное функционирование. Это требование дает ключ к пониманию принципов построения и структуры Internet. В модели ARPAnet всегда была связь между компьютером-источником и компьютером-приемником (станцией назначения). Сеть предполагалась ненадежной: любая часть сети может исчезнуть в любой момент. Передача данных в сети была организована на основе протокола Internet – IP. Протокол IP – это правила и описание работы сети. Этот свод включает правила налаживания и поддержания связи в сети, правила обращения с IP-пакетами и их обработки, описания сетевых пакетов семейства IP (их структура и т.п.). Пока Международная Организация по Стандартизации (Organization for International Standardization – ISO) тратила годы, создавая окончательный стандарт для компьютерных сетей, пользователи ждать, не желали. Активисты Internet начали устанавливать IP-программное обеспечение на все возможные типы компьютеров. Вскоре это стало единственным приемлемым способом для связи разнородных компьютеров. Такая схема понравилась правительству и университетам, которые проводят политику покупки компьютеров у различных производителей. Каждый покупал тот компьютер, который ему нравился и вправе был ожидать, что сможет работать по сети совместно с другими компьютерами.
Примерно 10 лет спустя после появления ARPAnet появились Локальные Вычислительные Сети (LAN), например, такие как Ethernet и др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена операционная система UNIX. Эта ОС имела возможность работы в сети с протоколом Internet (IP). В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPAnet своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать свои собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе, ведь тогда пользователи из одной сети смогли бы связываться с пользователями другой сети.
Одной из важнейших среди этих новых сетей была NSFNET, разработанная по инициативе Национального Научного Фонда (National Science Foundation – NSF). В конце 80-х NSF создал пять суперкомпьютерных центров, сделав их доступными для использования в любых научных учреждениях. Было создано всего лишь пять центров потому, что они очень дороги даже для богатой Америки. Именно поэтому их и следовало использовать кооперативно. Возникла проблема связи: требовался способ соединить эти центры и предоставить доступ к ним различным пользователям. Сначала была сделана попытка использовать коммуникации ARPAnet, но это решение потерпело крах, столкнувшись с бюрократией оборонной отрасли и проблемой обеспечения персоналом.
Тогда NSF решил построить свою собственную сеть, основанную на IP технологии ARPAnet. Центры были соединены специальными телефонными линиями с пропускной способностью 56 KBPS (7 KB/s). Однако, было очевидно, что не стоит даже и пытаться соединить все университеты и исследовательские организации непосредственно с центрами, т.к. проложить такое количество кабеля – не только очень дорого, но практически невозможно. Поэтому решено было создавать сети по региональному принципу. В каждой части страны заинтересованные учреждения должны были соединиться со своими ближайшими соседями. Получившиеся цепочки подсоединялись к суперкомпьютеру в одной из своих точек, таким образом суперкомпьютерные центры были соединены вместе. В такой топологии любой компьютер мог связаться с любым другим, передавая сообщения через соседей.
Это решение было успешным, но настала пора, когда сеть уже более не справлялась с возросшими потребностями. Совместное использование суперкомпьютеров позволяло подключенным общинам использовать и множество других вещей, не относящихся к суперкомпьютерам. Неожиданно университеты, школы и другие организации осознали, что заимели под рукой море данных и мир пользователей. Поток сообщений в сети (трафик) нарастал все быстрее и быстрее пока, в конце концов, не перегрузил управляющие сетью компьютеры и связывающие их телефонные линии. В 1987 г. контракт на управление и развитие сети был передан компании Merit Network Inc., которая занималась образовательной сетью Мичигана совместно с IBM и MCI. Старая физически сеть была заменена более быстрыми (примерно в 20 раз) телефонными линиями. Были заменены на более быстрые и сетевые управляющие машины.
Процесс совершенствования сети идет непрерывно. Однако, большинство этих перестроек происходит незаметно для пользователей. Включив компьютер, мы не увидем объявления о том, что ближайшие полгода Internet не будет доступна из-за модернизации. Возможно, даже более важно то, что перегрузка сети и ее усовершенствование создали зрелую и практичную технологию.
2. Структура Глобальных сетей
Оператор сети - это компания, которая поддерживает нормальную работу сети.
Провайдер (serviceprovider) – компания, которая оказывает платные услуги абонентам сети. Основными потребителями глобальной сети являются ЛВС, офисные АТС, кассовые терминалы, факсы, хост- компьютеры.
Сеть строится на основе выделенных каналов связи, которые соединяют коммутаторы глобальной сети между собой. Основные типы конечных узлов глобальной сети: отдельные ПК, локальные сети, маршрутизаторы и мультиплексоры, используются для одновременной передаче по сети данных и голоса.
Физическая структуризация сети - конфигурация каналов связи, образованных отдельными участками кабеля. Устройства DCE (DataCircuitterminatingEquipment) представляют собой аппаратуру передачи данных по каналам, работающую на физическом уровне. Различают аппаратуру передачи данных по аналоговым и цифровым каналам. Для передачи данных по аналоговым каналам используют модемы различных стандартов, а по цифровым – устройства DSU/CSU.
DTE (DataTerminalEquipment) – это очень широкий класс устройств, которые непосредственно готовят данные для передачи по глобальной сети. DTE представляют собой устройства, работающие на границе между локальными и глобальными сетями и выполняющие протоколы уровней более высоких, чем физический. DTE могут поддерживать только канальные протоколы- такими устройствами являются удаленные мосты, либо протоколы канального и сетевого уровней – тогда они являются маршрутизаторами, а могут поддерживать протоколы всех уровней, включая прикладной- в этом случае их называют шлюзами.
Связь компьютера или маршрутизатора с цифровой выделенной линией осуществляется с помощью пары устройств, обычно выполненных в одном корпусе или же совмещенных с маршрутизатором. Этими устройствами являются: устройство обслуживания данных (DataServiceUnit - DSU), и устройство обслуживания канала (ChannelServiceUnit - CSU). Устройство обслуживания данных DSU преобразует сигналы, поступающие от конечного оборудования данных DTE. Устройство обслуживания канала CSU также выполняет все временные отсчеты, регенерацию сигнала и выравнивание загрузки канала. CSU выполняет более узкие функции, в основном оно занимается созданием оптимальных условий передачи в линии (выравнивание). Эти устройства часто называют, одним словом DSU/CSU.
DTE принимают решения о передаче данных в глобальную сеть, а также выполняют форматирование данных на канальном и сетевом уровнях, а для сопряжения с территориальным каналом используют DCE. Такое распределение функций позволяет гибко использовать одно и тоже устройство DTE для работы с разными глобальными сетями за счет замены только DCE. Устройства DTE и DCE обобщенно называют оборудованием, размещенным на территории абонента глобальной сети – CPE (CustomerPremisesEquipment). Логическая структуризация сети - это конфигурация информационных потоков между ПК сети.
Перед передачей данных в сети они разбиваются на блоки, которые называются пакеты или кадры. Пакет это основная единица информации в компьютерных сетях. Разбиение на пакеты происходит на прикладном уровне, проходя через все уровни к пакету добавляется информация соответствующая данному уровню. Пакеты состоят из следующих компонентов: адрес источника; передаваемые данные; адрес места назначения; инструкции сетевым компонентам о дальнейшем маршруте пакета; информация ПК получателю, о том, как следует объединить пакеты, чтобы получить данные в исходном виде; информация о проверке на ошибки. Компоненты группируются в 3 раздела: Заголовок, данные, трейлер. Заголовок включает сигнал «говорящий» о том, что передается пакет, адрес источника, адрес места назначения. Данные включают в себя непосредственно передаваемые данные. Размер от 512 байт до 4 Кбайт. Трейлер включает информацию о проверке ошибок.