Если удалось подобным образом описать стоящую перед вами задачу, вы уже целиком погрузились в мир нечеткости. Теперь необходимо что-то, что поможет найти верный путь в этом лабиринте. Таким путеводителем вполне может стать база нечетких правил. О методах их составления мы поговорим ниже.
На этом этапе определяются продукционные правила, связывающие лингвистические переменные. Совокупность таких правил описывает стратегию управления, применяемую в данной задаче.
Большинство нечетких систем используют продукционные правила для описания зависимостей между лингвистическими переменными. Типичное продукционное правило состоит из антецедента (часть ЕСЛИ …) и консеквента (часть ТО …). Антецедент может содержать более одной посылки. В этом случае они объединяются посредством логических связок И или ИЛИ.
Процесс вычисления нечеткого правила называется нечетким логическим выводом и подразделяется на два этапа: обобщение и заключение.
Пусть мы имеем следующее правило:
ЕСЛИ ДИСТАНЦИЯ=средняя И
УГОЛ=малый, ТО МОЩНОСТЬ=средняя.
Обратимся к примеру с контейнерным краном и рассмотрим ситуацию, когда расстояние до платформы равно 20 метрам, а угол отклонения контейнера на тросе крана равен четырем градусам. После фаззификации исходных данных получим, что степень принадлежности расстояния в 20 метров к терму СРЕДНЯЯ лингвистической переменной ДИСТАНЦИЯ равна 0,9, а степень принадлежности угла в 4 градуса к терму МАЛЫЙ лингвистической переменной УГОЛ равна 0,8.
На первом шаге логического вывода необходимо определить степень принадлежности всего антецедента правила. Для этого в нечеткой логике существуют два оператора: MIN(…) и MAX(…). Первый вычисляет минимальное значение степени принадлежности, а второй - максимальное значение. Когда применять тот или иной оператор, зависит от того, какой связкой соединены посылки в правиле. Если использована связка И, применяется оператор MIN(…). Если же посылки объединены связкой ИЛИ, необходимо применить оператор MAX(…). Ну а если в правиле всего одна посылка, операторы вовсе не нужны. Для нашего примера применим оператор MIN(…), так как использована связка И. Получим следующее:
MIN(0,9;0,8)=0,8.
Следовательно, степень принадлежности антецедента такого правила равна 0,8. Операция, описанная выше, отрабатывается для каждого правила в базе нечетких правил.
Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов MIN/MAX вычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.
После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.
На этом этапе осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.
Результат нечеткого вывода, конечно же, будет нечетким. В примере с краном команда для электромотора крана будет представлена термом СРЕДНЯЯ (мощность), но для исполнительного устройства это ровно ничего не значит.
Для устранения нечеткости окончательного результата существует несколько методов. Рассмотрим некоторые из них. Аббревиатура, стоящая после названия метода, происходит от сокращения его английского эквивалента.
Так как результатом нечеткого логического вывода может быть несколько термов выходной переменной, то правило дефаззификации должно определить, какой из термов выбрать. Работа правила СоМ показана на рис. 4.
При использовании этого метода правило дефаззификации выбирает максимальное из полученных значений выходной переменной. Работа метода ясна из рис. 5.
В этом методе окончательное значение определяется как проекция центра тяжести фигуры, ограниченной функциями принадлежности выходной переменной с допустимыми значениями. Работу правила можно видеть на рис. 6.
Применение: MYCIN, Fuzzy CLIPS, AM, HEARSAY-11, PROSPECTOR. «Экспертные системы»
В современном обществе при решении задач управления сложными многопараметрическими и сильно связанными системами, объектами и производственными и технологическими процессами приходится сталкиваться с решением неформализуемых и трудноформализуемых задач. Такие задачи часто возникают в следующих областях: авиация, космос и оборона, нефтеперерабатывающая промышленность и транспортировка нефтепродуктов, энергетика, металлургия, машиностроительная промышленность, медицина, прогнозирование и мониторинг и другие.
В начале 60-х годов в рамках исследований по искусственному интеллекту (ИИ) сформировалось самостоятельное направление - экспертные системы (ЭС). В задачу этого направления входит исследование и разработка программ (устройств), использующих знания и процедуры вывода для решения задач, ранее решавшихся только человеком-экспертом. Области применения ЭС включают широкий проблемный спектр от медицинской диагностики и определения курса лечения до систем управления различного рода, планирования и контроля процесса производства.
Экспертная система — система, объединяющая возможности компьютера со знаниями и опытом эксперта в такой форме, что система способна предложить разумный совет или осуществить разумное решение. Дополнительно желаемой характеристикой такой системы является способность пояснять ход своих рассуждений в понятной для человека форме.
Данное определение ЭС одобрено комитетом группы специалистов по экспертным системам Британского компьютерного общества.
Под экспертной системой понимают программу, которая, используя знания специалистов (экспертов) о некоторой конкретной узко специализированной предметной области и в пределах этой области, способна принять решение на уровне эксперта-профессионала.
Можно отметить двойственность толкования названия ЭС, т.к. во-первых, в них используется знания экспертов, а во-вторых, ЭС сами могут выступать в качестве экспертов.
Огромный интерес к экспертным системам со стороны пользователя вызван следующими причинами:
1. Специалисты, не знающие программирования, с помощью экспертных систем могут самостоятельно разрабатывать интересующие их приложения, что позволяет резко расширить сферу использования вычислительной техники.
2. Экспертные системы при решении практических задач достигают результатов, не уступающих, а иногда и превосходящих возможности людей экспертов, не оснащенных ЭС.
3. Решаемые экспертными системами задачи являются неформализованными и используют эвристические, экспериментальные, субъективные знания экспертов в определенной предметной области.
4. В экспертных системах знания отделены от данных, и мощность ЭС обусловлена в первую очередь мощностью базы знаний и только во вторую очередь используемыми методами решения задач.
Обычно к экспертным системам относят системы, основанные на знаниях, т.е. системы, функциональные возможности которых являются в первую очередь следствием их наращиваемой базы знаний (БЗ) и только во вторую очередь определяется используемыми методами принятия решения.
Правильное функционирование ЭС, как систем основанных на знаниях, зависит от качества и количества знаний, хранимых в их БЗ. Поэтому приобретение знаний для ЭС является очень важным процессом.
Приобретение (извлечение) знаний — получение информации о проблемной области различными способами, в том числе от специалистов, и выражение её на языке представления знаний с целью построения БЗ. Необходимо умело «скопировать» образ мышления эксперта.
Знания для ЭС могут быть получены из различных источников: книг, отчетов, баз данных, эмпирических правил, персонального опыта эксперта и т. п. Возможны 3 способа получения знаний от эксперта: протокольный анализ, интервью и игровая имитация профессиональной деятельности
Классификация экспертных систем
По назначению: экспертные системы общего назначения; специализированные: а) проблемно-ориентированные для задач диагностики, проектирования, прогнозирования; б) предметно-ориентированные для решения специфических задач, например, контроль ситуации на АЭС.
По степени зависимости от внешней среды:
-статические экспертные системы, не зависящие от внешней среды;
- динамические, учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени.
По типу использования:
- изолированные экспертные системы;
- экспертные системы на входе/выходе других систем;
- гибридные экспертные системы, интегрированные с базами данных и другими программными средствами.
По сложности решаемых задач:
- простые экспертные системы, имеющие до 1000 простых правил;
- средние системы, имеющие от 1000 до 10000 правил;
- сложные, имеющие более 10000 правил.
По стадии создания:
- исследовательский образец, разработанный за 1-2 месяца с минимальной базой знаний;
- демонстрационный образец, разработанный за 3-4 месяца на языках LISP, PROLOG и др.;
- промышленный образец, разработанный за 4-8 месяцев с полной базой знаний на языках типа CLIPS;
- коммерческий образец, разработанный за 1,5 – 2 года на современных языках с полной базой знаний.