Смекни!
smekni.com

Теория искусственного интеллекта (стр. 14 из 16)

Области применения ЭС

В настоящее время ЭС используются при решении задач следующих типов:

· принятие решений в условиях неопределенности (неполноты) информации о внешнем мире,

· интерпретация символов и сигналов (например, системы оптического распознавания),

· прогнозирование (погоды, месторождений полезных ископаемых),

· диагностика (заболеваний, состояния технических устройств),

· конструирование (например, технических устройств), планирование (например, банковских операций),

· обучение,

· управление, контроль и др.

Функциональная структура экс пертной системы

Рис. 13.1.Структура ЭС


*Типичная экспертная система состоит из следующих основных компонентов: модуля принятия решения (интерпретатора), БД, БЗ, пользовательского интерфейса.

Ввод входных данных и информации о текущей задаче – через пользователя.

База данныхпредназначена для хранения исходных и промежуточных данных, необходимых для решения текущей задачи. Термин база данных совпадает по названию, но не по значению с термином, используемым в информационно-поисковых системах и системах управления БД, где он обозначает список однотипных единиц информации.

Пример содержимого базы данных ЭС обработки детали на станке.

База знаний (БЗ) — совокупность описывающих предметную область правил и фактов, позволяющих с помощью механизма вывода выводить суждения в рамках этой предметной области, которые в явном виде в базе не присутствуют.

Решатель, используя информацию из БД и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к данным из БД, приводят к решению задачи. Этот модуль используется и на этапе обучения системы и на этапе проведения экспертизы. В начале обучения база знаний системы пуста. Используя данные из БД, решатель пытается выработать какое-то суждение. Поскольку в БЗ отсутствуют какие-либо правила, требуемые для решения задачи, суждение будет неверным, на что системе будет указано человеком-экспертом, а так же будет введен правильный ответ. Используя полученную от человека информацию (правильное суждение), решатель дополнит БЗ соответствующими правилами. Затем модуль принятия решений попытается вывести новое суждение. Если ответ, полученный системой в результате ее работы, является верным, модуль принятия решений еще раз подтвердит правила, участвовавшие в принятии ответа. Такой процесс обучения продолжается до тех пор, пока ЭС не начнет выводить только правильные суждения. К моменту проведения экспертизы база знаний уже заполнена при помощи модуля принятия решений необходимыми для решения поставленной задачи правилами. Применяя проверенные правила к данным из БД, модуль принятия решения выведет требуемое суждение.

Интерфейс пользователя предназначен для осуществления процесса взаимодействия между человеком-экспертом и экспертной системой. Он обеспечивает возможность высокоуровневого общения с ЭС, преобразуя входные данные, представленные на естественном языке, во внутреннее представление ЭС, а сообщения ЭС — в обратном направлении.

Таким образом, данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы преобразования данных, характерные для рассматриваемой проблемной области. Эксперт, используя интерфейс пользователя, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.

Режимы работы ЭС

Существует 2 режима работы ЭС: режим приобретения знаний и режим решения задач. В режиме приобретения знаний ЭС заполняется знаниями при помощи инженера по знаниям и эксперта в какой-то проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил, которые инженер по знаниям заносит в том или ином виде в базу знаний.

В режиме решения задач необходимо посредством интерфейса пользователя заполнить БД данными о задаче. При этом данные пользователя о задаче, представленные на привычном для пользователя языке, преобразуются во внутренний язык системы.

Итак, на основе входных данных из БД и данных и правил о проблемной области из БЗ модуль принятия решения выводит суждение, являющееся решением поставленной перед ЭС задачи. Если ответ ЭС не понятен пользователю, то он может потребовать объяснения, как этот ответ получен.

Рис. 13.2. Алгоритм работы ЭС в режиме обучения

Технология проектирования и разработки ЭС

Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.

Создавать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче.

Чтобы разработка ЭС была возможной для данной проблемной области, необходимо одновременное выполнение, по крайней мере следующих требований:

1. К экспертам:

0. существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;

1. эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;

2. эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут "извлечены" и вложены в ЭС;

3. решение задачи требует только рассуждений, а не действий;

5. Задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);

6. Задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно "понятной" и структурированной области, т.е. должны быть выделены основные понятия, отношения между ними и известные (хотя бы эксперту) способы получения решения задачи.

7. решение задачи не должно в значительной степени использовать «здравый смысл» (т.е.широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), т.к. подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.

Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

1. решение задачи принесет значительный эффект, например экономический;

2. использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;

3. использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;

4. использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.

Приложение соответствует методам инженерии знаний, если решаемая задача обладает совокупностью следующих характеристик:

1) задача может быть решена посредством манипуляции с символами (т.е. с помощью символических рассуждений), а не манипуляций с числами, как принято в математических методах и в традиционном программировании;

2) задача должна иметь эвристическую, а не алгоритмическую природу, т.е. ее решение должно требовать применения эвристических правил. Задачи, которые могут быть гарантированно решены (с соблюдением заданных ограничений) с помощью некоторых формальных процедур, не подходят для применения ЭС;

3) задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;

4) задача должна быть достаточно узкой, чтобы решаться методами ЭС, и практически значимой.

При разработке ЭС, как правило, используется концепция "быстрого прототипа". Смысл ее состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой - время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.

В ходе работ по созданию ЭС сложилась технология их разработки, включающая шесть следующих этапов (рис. 1.4):