Смекни!
smekni.com

Создание и развитие информационных технологий систем управления (стр. 2 из 3)

Отказоустойчивость – это такое свойство вычислительной системы, которое обеспечивает ей, как логической машине, возможность продолжения действий, заданных программой, после возникновения неисправностей. Обеспечение отказоустойчивости требует аппаратной, программной и логической информационной избыточности. Направления, связанные с предотвращением неисправностей и с отказоустойчивостью, – основные в проблеме надежности. Концепции параллельности и отказоустойчивости вычислительных систем естественным образом связаны между собой, поскольку в обоих случаях требуются дополнительные функциональные компоненты. Поэтому, собственно, на параллельных вычислительных системах достигается как наиболее высокая производительность, так и, во многих случаях, очень высокая надежность. Имеющиеся ресурсы избыточности в параллельных системах могут гибко использоваться как для повышения производительности, так и для повышения надежности. Структура многопроцессорных и многомашинных систем управления приспособлена к автоматической реконфигурации и обеспечивает возможность продолжения работы системы после возникновения неисправностей.

Следует помнить, что достижение надежности систем управления связано не только с надежностью аппаратных средств, но и программного, информационного, организационного обеспечения. Главной целью повышения надежности систем является целостность хранимых в них данных, согласованность мероприятий по обеспечению надежности компонент.

Масштабируемость систем управления

Масштабируемость представляет собой возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов вычислительной системы. Масштабируемость должна обеспечиваться архитектурой и конструкцией системы управления, а также соответствующими средствами программного обеспечения.

Добавление каждого нового процессора в действительно масштабируемой системе управления должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости развития системы управления. Развитие компьютерной системы, являющейся компонентом системы управления, должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за усложнения связей и трафика между процессорами и основной памятью, а также между памятью и устройствами ввода / вывода. В действительности реальное увеличение производительности компьютерных систем в значительной степени зависит от состава прикладных задач.

Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но и зависит от заложенных свойств программного и информационного обеспечения. Масштабируемость программного обеспечения затрагивает все его уровни от программ передачи сообщений до программ работы со сложными объектами, и программ взаимодействия со средой системы управления. В частности, программное обеспечение должно обеспечить оптимальный трафик межпроцессорного обмена, который может препятствовать линейному росту производительности системы. Аппаратные средства (процессоры, шины и устройства ввода / вывода) являются частью масштабируемой архитектуры, используя возможности которой программное обеспечение может обеспечить предсказуемый рост производительности при изменении масштабов компьютерной системы управления. Важно понимать, что простой переход, например, на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам. Проблема масштабируемости систем управления определяет ее экономичность и должна находиться в поле зрения руководителя.

Совместимость и мобильность программного обеспечения систем управления

Концепция программной совместимости закладывается при проектировании систем управления и заключается в создании такой архитектуры системы управления, комплекса оборудования, которые были бы одинаковыми с точки зрения пользователя для всех вариантов применяемых в системе средств независимо от их цены и производительности. Преимущества такого подхода, позволяющего сохранять существующее программное обеспечение при переходе на новые (как правило, более производительные) модели, были быстро оценены как производителями и поставщиками средств систем управления, так и пользователями. Практически все поставщики компьютерного оборудования для систем управления взяли на вооружение эти принципы, поставляя серии совместимых компьютеров, программ, баз данных. Однако, со временем даже самая передовая архитектура неизбежно устаревает и возникает потребность внесения радикальных изменений в архитектуру и способы организации систем управления.

Одним из наиболее важных факторов, определяющих современные тенденции в развитии информационных технологий управления, является ориентация компаний-поставщиков оборудования на рынок прикладных программных средств. Это объясняется, прежде всего, тем, что для конечного пользователя, в конце концов, важно программное обеспечение, позволяющее решить его задачи, а не выбор той или иной аппаратной платформы. Переход от однородных сетей программно совместимых компьютеров к построению неоднородных сетей, включающих компьютеры разных фирм-производителей, в корне изменил и точку зрения на саму сеть. Из сравнительно простого средства обмена информацией компьютерные сети превратилась в средство интеграции отдельных ресурсов – мощную распределенную вычислительную систему, каждый элемент которой (сервер или рабочая станция) лучше всего соответствует требованиям конкретной прикладной задачи управления.

Этот переход выдвинул ряд новых требований:

· Во-первых, прежде всего такая вычислительная среда должна позволять гибко менять количество и состав аппаратных средств и программного обеспечения в соответствии с меняющимися требованиями решаемых задач.

· Во-вторых, компьютерная среда должна обеспечивать возможность запуска одних и тех же программных систем на различных аппаратных платформах, т.е. обеспечивать мобильность программного обеспечения.

· В-третьих, компьютерная среда систем управления должна гарантировать возможность применения одних и тех же человеко-машинных интерфейсов на всех компьютерах, входящих в неоднородную сеть.

В условиях жесткой конкуренции производителей аппаратных платформ и программного обеспечения сформировалась концепция открытых систем, представляющая собой совокупность стандартов на различные компоненты вычислительной среды, предназначенных для обеспечения мобильности программных средств в рамках неоднородной, распределенной вычислительной системы.

Одним из вариантов моделей открытой среды является модель OSE (OpenSystemEnvironment), предложенная комитетом IEEEPOSIX. На основе этой модели Национальный институт стандартов и технологий США выпустил документ «ApplicationPortabilityProfile (APP). TheU.S. Government'sOpenSystemEnvironmentProfileOSE/1, который, в частности, определяет рекомендуемые для систем государственного управления федеральных учреждений США спецификации в области информационных технологий, обеспечивающие мобильность системного и прикладного программного обеспечения.

Ведущие производители компьютеров и программного обеспечения придерживаются требований документов, определяющих совместимость и взаимодействие частей системы управления. Эта проблема также должна быть в поле зрения руководителя как заказчика системы управления.

Аппаратные и программные средства систем управления, ориентированные на руководителя

автоматизированный управление система надежность

Важнейший вид аппаратных средств систем управления, ориентированных на руководителей в распределенных сетевых системах управления – рабочие станции (или автоматизированные рабочие места (АРМ)). Они осуществляют интегрированную обработку данных по всем альтернативам проблемных ситуаций в зоне компетенции руководителя, имеют различные структуры связи с сетевыми серверами, образуя различные архитектуры прикладных систем для индивидуальной и групповой обработки данных. В этой связи в последующих разделах рассматриваются тенденции развития АРМ и рабочих станций, как важнейшего звена непосредственного контакта компьютерных информационных систем управления с руководством, различные классы архитектур объединения рабочих станций в системы управления.


Автоматизированные рабочие места и рабочие станции в системах управления