СОДЕРЖАНИЕ
Введение
1. Анализ предметной области и постановка задачи
1.1 Анализ и виды интеллектуальных агентов в системе дистанционного обучения и их характеристики
1.2 Постановка задачи
2. Модель интеллектуального агента глоссария
2.1 Построение модели интеллектуального агента
2.2 Построение интеллектуального агента на платформе Jadex с помощью XML формата
3. Описание программного модуля
3.1 Описание среды разработки агента платформы Jadex
3.2 Описание интеллектуального агента с помощью BDI
Выводы
Перечень ссылок
Приложение А Список терминов в формате XML
Приложение В Описание тегов XML документа в формате DTD
В последнее время происходит бурное развитие систем телекоммуникаций, одним из ключевых элементов которых является глобальная компьютерная сеть Интернет. Интернет представляет собой первую реализацию опосредованной компьютерами гипермедийной среды. На этой основе были предложены альтернативные формы образования для тех студентов, которые лучше всего располагают гибким временем. Эта ситуация, распространенная больше всего в отдельных ситуациях, когда невозможно преодолеть проблемы масштаба в расположении студентов, и когда определенная тема не доступна в одном месте. Использование Интернет в качестве элемента для системы дистанционного обучения может оказать значительное влияние на положительный имидж фирмы и их клиента, как дополнительное образование.
Дистанционное обучение (ДО) - это обучение на расстоянии, когда преподаватель и обучаемый разделены пространственно и когда все или большая часть учебных процедур осуществляется с использованием современных информационных и телекоммуникационных технологий.
Дистанционное обучение через Интернет - это обучение, при котором предоставление обучаемым существенной части учебного материала и большая часть взаимодействия с преподавателем осуществляются с использованием технических, программных и административных средств глобальной сети Интернет [1].
Большой интерес в развитых странах к удаленному обучению проявляют студенты. В высших учебных заведениях используют дистанционные онлайновые программы, как составную часть образовательного процесса.
Отличительной особенностью дистанционного обучения является предоставление обучаемым возможности самим получать требуемые знания, пользуясь развитыми информационными ресурсами, предоставляемыми современными информационными технологиями. Информационные ресурсы: базы данных и знаний, компьютерные, в том числе мультимедиа, обучающие и контролирующие системы, видео- и аудиозаписи, электронные библиотеки - вместе с традиционными учебниками и методическими пособиями создают уникальную распределенную среду обучения, доступную широкой аудитории.
Проведение видео- и телевизионных лекций, компьютерных видео - и текстовых конференций, возможность частых, вплоть до ежедневных, консультаций с преподавателем по компьютерным коммуникациям делают взаимодействие обучаемых с преподавателями даже более интенсивными, чем при традиционной форме обучения [2].
Интенсивные телекоммуникационные взаимодействия обучаемых студентов между собой и с преподавателями консультантами позволяют проводить электронные семинары и деловые игры.
При организации персонального обучения, на вход поступает информация об обучаемом студенте от обучающих ресурсов, распределенных в сети. На выходе получаем множество учебных материалов, объединенных в логическую последовательность в индивидуальном подходе обучения. При выборе необходимых учебных материалов применяется стандарт метаданных учебных материалов, который организует единый доступ на получение их с обучающих ресурсов, находящихся в глобальной сети Интернет. Механизмом выполнения данной функции является совокупность программных агентов, организованных в виде мультиагентной системы. При этом он получает возможность самостоятельного изучения материала под присмотром агента, который предлагает и контролирует получение знаний. Возможность студентом посредством компьютера выполнять лабораторные и практические задания по пройденному материалу лекций, просматривать дополнительную информацию в виде глоссария термином, также есть возможность проходить тесты по окончании изучения материала и для оценивания знаний студента [3].
Поскольку подобные системы содержат большой объем разнородной информации, возникает проблема наиболее полного, эффективного и индивидуального представления материала для пользователя. Для повышения качества и эффективности обучения необходимо применять новые методологии обучения.
Для решения этой проблемы интеллектуальные системы дистанционного обучения являются наиболее перспективным направлением развития методов обучения. В подобных приложениях весьма эффективен мультиагентный подход, в рамках которого система строится как совокупность агентов (агенты пользователя, агенты преподавателя, агенты лекций и даже агенты отдельных объектов знания: определений понятий и правил, задач, методов, результатов, лабораторных работ, комментариев и т.д.). Каждый из агентов имеет описание своего поля деятельности, преследует собственные цели, переговаривается с другими агентами для достижения компромиссов и т.д. [4].
Решая эту заду, разработаны и используются так называемые агентные технологии для автоматизации сервисов и служб. Они включают в себя следующие уровни функционирования: XML, RDF+RFFS, словарь онтологий, логика, тест, разрешение, коммутацию, а также существующие уровни кодирования информации и уникальной идентификации ресурсов.
Для организации персонализированного дистанционного обучения необходимо создать профайл обучаемого, на основании которого будет осуществляться индивидуальный подбор учебных материалов и формирование оптимальной последовательности их в процессе обучения, а также произвести поиск и доставку учебных материалов из обучающих ресурсов, находящихся в информационно-образовательной среде сети.
Агентные технологии предоставляют возможность разработать программно-инструментальные средства для выполнения каждой функциональной задачи. Управление выполнением функциональных задач с использованием программных агентов обеспечивается онтологическими моделями.
Архитектура разрабатываемой системы дистанционного получения образования содержащая в себе модули структурирования данных и утилиты управления ими, предусматривает консультации с помощью глоссария, через среду интеллектуального агента глоссария, который содержит модули логики и вызова справочника терминов [5].
Поддержка пользователей будет осуществляться с помощью просмотра дополнительной информации, пройденной по лекционному материалу. Учитывая использование системы пользователем, во время лекций, пользователю может, потребоваться придать системе характер независимый от его нахождения. Рассмотреть формирование ответа, на запрос пользователем в поиске дополнительного материала.
Решения проблемы для системы создать модуль, выполняющий связь между пользователей с набором логически заданными функциями для рекомендуемых действий с соответствием поставленного запроса к системе, основанная на применение интеллектуального принятия решения виртуальным агентом.
Целью курсового проекта является разработка интеллектуального агента глоссария с набором терминов по тематическим вопросам.
Наиболее важным аспектом для дистанционного обучения, развитие в пределах Internet - стандартизация технологий различными международными организациями. Несколько параллельных усилий IEEE LTSC, AICC, ADL, IMS, ARIADNE, и некоторых других организаций привели к сосуществованию различных стандартов и спецификаций. Однако почти все из них - относительные взаимосвязи содержания, моделей данных, и протоколов. Центральная часть тех стандартов – относительно достижения способности к взаимодействию, достижимости и возможности многократного использования доступного через сеть содержания изучения посредством различного типа метаданных.
Любой объект может использоваться для изучения, образования или обучения до и после того, как используемый термин объекта изучен. Составление обучающего множества от набора дистанционного обучения предполагает упорядочивание их для представления предназначенного поведения учащегося.
Развитие спецификаций, основанное на идее, что все дистанционное обучение – это пассивный объект и вся деятельность изучения, должна происходить от пользователей.
Агенты рассматриваются перспективным подходом для формирования сложных программных систем, потому что парадигма агента учитывает приложения моделирования естественным способом. Имеется ряд различных подходов, чтобы определить моделирование агента. Агент может рассматриваться, как восприятие и действие или модель "Belief – Desire – Intention" (BDI), как теория человеческого практического рассуждения. Эта модель осуществляется на различных компьютерных технологиях, которые направлены на реализацию логики агента. Другой очень важный предмет в ориентировано - агентном подходе устанавливает связи между агентами в среде мультиагентных систем.
Основа для интеллектуальных агентов продвигает стандарты, которые особенно определяют связь агента, как основная категория в основе FIPA модели мультиагентных систем. Мы выбираем для нашего исследования и практики платформу мультиагентных систем Jade и Jadex, и они следуют за BDI архитектурой [6, 18].
1.1.1. Среда разработки Jadex. Среда разработки Jadex – это средство для создания интеллектуальных агентов. Используется различными видами агентов, предоставляя основные сервисы, такие как инфраструктура коммуникаций или средства для управления.