Смекни!
smekni.com

Предмет и объект прикладной информатики (стр. 1 из 34)

Понятие архитектуры ЭВМ. Классическая архитектура ЭВМ и принципы фон Неймана. Архитектура персональных компьютеров

Общие принципы построения современных ЭВМ: построения всех современных ЭВМ является программное управление. В его основе представление решение любой задачи в виде программы вычислений.

Алгоритм- это конечный набор предписаний, определяющий решение задач по средствам конечного количества операций.

Программы – это упорядоченная последовательность команд, подлежащая обработке.

Все вычисления, предписанные решения, задачи, должны быть представлены виде программы, состоящие из последовательности управляющих слов – команд.

Каждая команда содержит указания на конкретную выполняющую операцию, место нахождения операндов, и ряд служебных признаков.

Операнды- переменные значения которые участвуют в операции преобразования данных.

Архитектура ЭВМ совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих типов задач.

Структура - совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств.

Отличие архитектуры от структуры: структура определяет его текущий состав и описывает связи внутри средства, архитектура определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил их взаимодействия.

Общие принципов построения ЭВМ, которые относятся к архитектуре:

• структура памяти ЭВМ;

• способы доступа к памяти и внешним устройствам;

• возможность изменения конфигурации компьютера;

• система команд;

• форматы данных;

• организация интерфейса. Из этого следует:

«Архитектура - это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов».

Классическая архитектура ЭВМ и принципы Фон Неймана

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он работал с первой ламповой ЭВМ ENIAC в 1944 г.

Классические принципы построения архитектуры ЭВМ были предложены в 40-ч годах ХХ века к этим принципам относятся:

Использование двоичной системы представления данных ЭВМ стали обрабатывать и нечисловые виды информации — текстовую, графическую, звуковую и другие. Двоичное кодирование данных по-прежнему составляет информационную основу компьютера.

Принцип программного управления. программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда.

Принцип хранимой программы программа задавалась путем установки перемычек на специальной коммутационной панели. Нейман предложил сохранять программу в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений. Фон Нейман выдвинул основополагающие принципы логического устройства ЭВМ,и предложил ее структуру которая воспроизводилась в течение первых двух поколений ЭВМ. Схема устройства такой ЭВМ представлена на рис. 4.10.

Внешняя память отличается от устройства ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках - внешняя память, а клавиатура - устройство ввода, дисплей и печать - устройства вывода.

Устройство управления (УУ) и арифметико-логическое устройство (АЛУ) в современных компьютерах объединены в один блок — процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств. Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно" и включает оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства(ВЗУ). ОЗУ- это устройство, хранящее ту информацию, с которой компьютер работает непосредственно в данное время ВЗУ-устройства гораздо большей емкости, чем ОЗУ, но существенно более медленны. На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер ячейки памяти из которой извлекается следующая команда программы, указывается- счетчиком команд в УУ.

Принцип адресности

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

Принцип последовательного выполнения операций.

Разработанные фон Нейманом основы получили название «фон-неймановской архитектуры». Исключение составляют отдельные разновидности систем для параллельных вычислений (примерами могут служить потоковая и редукционная вычислительные машины).

Отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

Архитектура персонального компьютера

Архитектура персонального компьютера — компоновка его основных частей, таких как процессор, ОЗУ, видеоподсистема, дисковая система, периферийные устройства и устройства ввода-вывода.

Появление третьего поколения ЭВМ произошло усложнение структуры за счет разделения процессов ввода-вывода информации и её обработки. Связанные устройства АЛУ и УУ получили название – процессор.

В схеме ЭВМ появились дополнительные устройства: процессоры ввода-вывода, устройства управления обменом информацией, каналы ввода-вывода (КВВ). Тенденция к децентрализации управления и параллельной работе отдельных устройств, резко повысила быстродействие ЭВМ в целом.

В персональных ЭВМ, относящихся к ЭВМ четвертого поколения, произошло дальнейшее изменение структуры (рис. 1.3). Они унаследовали ее от мини-ЭВМ.

Соединение всех устройств в единую машину обеспечивается с помощью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Все передачи данных по шине осуществляются под управлением сервисных программ. Ядро ПЭВМ образуют процессор и основная память (ОП), состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ). ПЗУ предназначается для записи и постоянного хранения наиболее часто используемых программ управления. Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и других обеспечивается через соответствующие адаптеры - согласователи скоростей работы сопрягаемых устройств или контроллеры - специальные устройства управления периферийной аппаратурой. Контроллеры в ПЭВМ играют роль каналов ввода-вывода. В качестве особых устройств следует выделить таймер - устройство измерения времени и контроллер прямого доступа к памяти (КПД) - устройство, обеспечивающее доступ к ОП, минуя процессор.

Все приведенные структуры не выходят за пределы классической структуры Ф.Неймона.

Из рисунка рис. 4.11 для связи между отдельными функциональными узлами ЭВМ используется общая шина Шина состоит из трех частей:

• шина данных, по которой передается информация;

• шина адреса, определяющая, куда передаются данные;

• шина управления, регулирующая процесс обмена информацией.

Описанную схему модно пополнить новыми устройствами - это свойство называют открытостью архитектуры. На рис. 4.11 представлен вид памяти - видео-ОЗУ (видеопамять). Видео память появилась с устройства вывода - дисплея. Дисплей является «очень быстрым» устройством отображения информации. Поэтому для ЭВМ третьего и четвертого поколений он является неотъемлемой частью.

Для получения картинки существует видеопамять. Объем видеопамяти зависит от числа цветов изображения. она показана пунктиром).

При описании магистральной структуры, все устройства взаимодействуют через общую шину. Такая структура применяется только для ЭВМ с небольшим числом внешних устройств. В состав ЭВМ могут вводиться одна или несколько дополнительных шин. Одна шина-для обмена с памятью, вторая -для связи с «медленными» внешними устройствами.

Характерные тенденций в развитии ЭВМ:

расширяется и совершенствуется набор внешних устройств

вычислительные машины перестают быть однопроцессорными, могут быть процессоры для вычисления с плавающей запятой, видеопроцессоры для ускорения вывода информации на экран дисплея и т.п.

машины не только для вычислений, но и для логического анализа информации.

Особенностью развития современных ЭВМ является возрастание роли межкомпьютерных коммуникаций, большее количество компьютеров объединяются в сети и обрабатывают имеющуюся информацию совместно.

Внутренняя структура вычислительной техники постоянно совершенствовалась и будет совершенствоваться.,

Все приведенные структуры не выходят за пределы классической структуры фон Неймана. Их объединяют следующие Традиционные признаки:

ядро ЭВМ образует процессор - единственный вычислитель в структуре, дополненный каналами обмена информацией и памятью;