Смекни!
smekni.com

Модель дослідження стійкості та якості перехідних процесів слідкувальної системи (стр. 2 из 6)

Ситуація 3. Ця ситуація є узагальненням двох попередніх. Для неї характерні як недостатня інформованість про зовнішні умови і фактори на етапі розробки керованого об'єкта, так і можливість не прогнозованих нестаціонарних змін зовнішніх умов у процесі функціонування об'єкта.

Спільною властивістю розглянутих ситуацій є необхідність пристосування до нових умов у процесі їхніх змін. Принципово його реалізують різними способами: зміною тільки властивостей, зміною тільки структури, або одночасною зміною властивостей і структури керованого об'єкта. Здатність нестаціонарної системи пристосовуватися до змін зовнішньою середовища або характеристик об'єкта називають адаптацією. Системи, що мають здатність адаптуватися до мінливих умов, прийнято називати адаптивними. Тут під нестаціонарною системою розуміють цілісний об'єкт, що складається з керованого об'єкта і системи управління, які с структурно взаємопов'язаними і функціонально взаємодіють для досягнення заданих цілей.

Отже, цей короткий аналіз показує, що в реальних умовах неповноти, неточності і суперечливості вихідної інформації ефективне функціонування сучасних складних систем можливе лише за наявності здатності до адаптації у процесі зміни наявних умов. Адаптація можлива тільки за необхідного рівня інформованої про властивості зовнішнього середовища і керованого об'єкта у процесі його функціонування. Звідси випливає, що задачі адаптації та оптимізації управління тісно взаємопов'язані із задачами адаптивного оптимального опрацювання інформації у разі зміни наявної ситуації. Такі задачі виходять за рамки підходів теорії управління класу У1. Розглянуті фактори стимулювали розвиток різних засобів та методів адаптивного управління і сприяли появі методів управління класів У2 і УЗ.

Водночас невпинне зростання обсягу і підвищення рівня вимог до сучасного виробництва ставить принципово нові, суттєво складніші теоретичні і практичні задачі управління. Поки що зроблено тільки перші кроки в теоретичному дослідженні найактуальніших проблем управління класів У4 і У5. Однак практичні задачі класу У4, зокрема задачі управління розвитком складних багаторівневих, багатопрофільних систем, розв'язують багато в чому інтуїтивно та емпірично вже кілька десятиліть. Класичним прикладом задач цього класу можна вважати розробку програм розвитку різних видів збройних сил. Такі задачі розв'язують у кожній незалежній державі, що приділяє належну увагу забезпеченню національної безпеки. В економіці подібні задачі виникають у будівництві та модернізації великих промислових підприємств із багатопрофільним виробництвом. Як приклад можна назвати хімічні комбінати, комбінати кольорової металургії тощо.

Задачі управління класу У5 є подальшим принциповим ускладненням задач класу У4. Воно полягає в тому, що під час розвитку керованого об'єкта принципово змінюється його зовнішня властивість — призначення, а отже, і цілі об'єкта. За таких умов задача виявляється принципово складнішою, ніж розробка самого об'єкта. Справді, розробник нового об'єкта має можливість вибору вигляду, структури, функцій, елементів кожного ієрархічного рівня й об'єкта загалом. У випадку управління призначенням ситуація, у якій розв'язують задачу, є принципово іншою. Об'єкт вже існує, має від лагоджені технології, систему постачання і збут) продукції, а також сформований колектив робітників та службовців із певним досвідом практичної діяльності у певному середовищі та профілі спеціальної професійної підготовки. Потрібно змінити в об'єкті головну властивість - його призначення, але водночас максимально зберегти всю наявну виробничу інфраструктуру і забезпечити максимально ефективне використання у новій сфері практичної діяльності. Очевидно, що забезпечити ефективне і своєчасне розв'язання широкого кола організаційних, технологічних, економічних, науково-технічних, соціальних і багатьох інших проблем, що виникають у цій ситуації, можна лише за наявності їхнього системного узгодження за цілями, задачами, термінами, ресурсами, очікуваними результатами, а також за наявності багаторівневого управління. [1]

1.2 Аналіз вимог до точності та стійкості слідкувальної системи

Точність системи автоматичного управління, одна з найважливіших характеристик систем автоматичного управління (САУ), що визначає міру наближення реального керованого процесу (КП) до потрібного. Відхилення КП від потрібного викликається динамічними властивостями об'єкту управління (ОУ) і САУ, помилками вимірювальних і виконавчих пристроїв, що входять в САУ, внутрішніми шумами в деяких її елементах і зовнішніми перешкодами. Воно складається з систематичної і випадкової помилок. Систематична помилка є математичним чеканням випадкового відхилення КП від потрібного. Випадкова помилка зазвичай характеризується дисперсією або середнім квадратичним відхиленням (в разі одновимірного КП) або кореляційною матрицею (в разі багатовимірного КП). Співвідношення між систематичною і випадковою помилками визначається смугою пропускання системи (діапазоном частот коливань вхідного сигналу, на які система помітно реагує). З розширенням смуги пропускання система стає менш інерційною і систематична помилка зменшується, проте при цьому збільшується дисперсія випадкової помилки. Тому при проектуванні САУ шукають деяке компромісне рішення задачі вибору смуги пропускання. Точність тісно пов'язана з іншою важливою характеристикою САУ - її чутливістю.

На початковому етапі розвитку автоматики питання про облік випадкових помилок не виникало і точність САУ характеризували лише систематичною помилкою. Необхідність обліку випадкових помилок, що виникла вперше при вирішенні завдань прицілювання при стрілянині і бомбометанні з літака і збільшена з появою радіолокації, привела до створення і розвитку статистичної теорії КП, яка стала одннм з найважливіших напрямів теорії автоматичного управління. Основні завдання статистичної теорії КП: 1) розрахунок точності при заданих характеристиках ОУ, САУ і випадкових обурень - статистичний аналіз САУ; 2) визначення оптимальних характеристик САУ, при яких досягається найбільша можлива точність при заданих статистичних характеристиках сигналів управління і перешкод, - статистичний синтез САУ. Статистична теорія КП дає методи статистичного аналізу і синтезу систем різних класів (лінійних, таких, що приводяться до лінійних, описуваних стохастичними диференціальними або різницевими рівняннями), а також загальні методи оптимізації лінійних і нелінійних систем по різних критеріях і методи визначення гранично досяжною (потенційною) точністю при заданих статистичних характеристиках корисних сигналів і перешкод. Методи статистичної теорії КП складні і вимагають вживання ЕОМ.

Управління складними системами зазвичай здійснюється в умовах невизначеності - за відсутності достатньої інформації про характеристики

корисних сигналів і перешкод, а в деяких випадках і про ОУ. Тому виникає проблема підвищення точності САУ безпосередньо в процесі її роботи. Це досягається вживанням принципів адаптації, вчення або самонавчання. Статистична теорія УП дає теоретичні підстави для проектування адаптивних (зокрема самоналагоджувальних), таких, що вчаться і самонавчальних САУ, а також методи оцінки ефективності вчення - підвищення їх точності. Розвиток статистичної теорії КП привів до створення на початку 70-х рр. 20 ст. основ теорії стохастичних систем, поширюючий і узагальнювальний методи статистичної теорії КП (у тому числі методи розрахунку точності) на системи, що включають не лише машини, автоматичні пристрої і ЕОМ, але і колективи людей.

ССП підрозділяють на пошукові та без пошукові. У пошукових ССП необхідна якість управління досягається в результаті автоматичного пошуку оптимального (в деякому розумінні) налаштування. Якість налаштування характеризується деяким узагальненим показником, пов'язаним з первинними параметрами налаштування складним, зазвичай не цілком стабільним і недостатньо відомим співвідношенням. Цей показник вимірюється безпосередньо або обчислюється по виміряних значеннях первинних параметрів. Параметрам налаштування в ССП надають пошукові або пробні зміни. Аналіз коливань показника якості налаштування, викликаних пошуковими діями, дозволяє встановити, чи є налаштування оптимальним, тобто відповідною екстремуму (максимуму або мінімуму) показника якості. Якщо мають місце відхилення від екстремуму, то налаштування змінюється до тих пір, поки не наблизиться до оптимальної. Пошукові ССП можуть працювати при зміні зовнішніх умов в широких межах.

Без пошукові ССП мають перед пошуковими системами певну перевагу, обумовлену тим, що пошук оптимального стану віднімає значний час, тобто час само настройки пошукових систем обмежений знизу. У без пошукових ССП використовується деякий контрольований показник якості управління (наприклад, значення похідної контрольованого параметра за часом). Автоматичним налаштуванням параметрів цей показник підтримується в заданих межах. Залежно від вигляду показника розрізняють ССП з контролем перехідних процесів, з контролем частотних характеристик, з еталонною моделлю і ін. Все це - замкнуті без пошукові ССП із замкнутим контуром само настройки, в якому параметри налаштування автоматично змінюються при виході показника якості за допустимі межі. Деякі замкнуті без пошукові ССП близькі до звичайних нелінійних систем автоматичного управління із зниженою чутливістю до характеристик об'єкту - до таких, наприклад, як релейні системи або управління системи із змінною структурою. Поряд із замкнутими застосовують також розімкнені ССП - , наприклад, системи параметричної компенсації. У цих ССП контролюються дії, що викликають зміну властивостей об'єкту, і за заздалегідь розрахованою програмою змінюються параметри налаштування системи; контур само настройки в цьому випадку розімкнений. Така само настройка може бути майже миттєвою, проте її здійснення вимагає контролю довкілля і досить точного знання законів дії середовища на керований об'єкт. [3]