Смекни!
smekni.com

Основные межвидовые взаимодействия, эволюция (стр. 1 из 2)

Московский Государственный

Институт Электронной Техники

(Технический Университет)

Курсовая работа

По курсу "Математическое моделирование"

По теме:

"Основные межвидовые взаимодействия, эволюция"

Выполнила:

Азанова И.В.
гр.МП-30

Проверил:

Лисовец Ю.П.

Москва 2007


Основные межвидовые взаимодействия

Модели отдельной популяции, могут достаточно точно описывать динамику популяции и в случае её взаимодействия с другими популяциями. Для этого в уравнение включаются соответствующие члены, выражающие влияние на численность данной популяции со стороны тех или иных видов.

В настоящее время для классификации возможных взаимодействий в экосистемах предлагается следующая формальная процедура: каждой паре видов сопоставляется три символа: либо "плюс", либо "нуль", либо "минусом" (когда изменение численности одного вида вызывает обратное изменение численности другого). Эти категории биотических взаимодействий приведены в таблице:

Тип

Влияние

взаимодействия

Первого вида на второй

Второго вида на первый

1

нейтрализм

0

0

2

аменсализм

0

3

комменсализм

+

0

4

конкуренция

5

Хищник–жертва

+

6

Мутуализ (симбиоз)

+

+

Рассмотрим, как же ведут себя численности популяций при каждом из этих взаимодействий. Моделирование в Matlab. Модель отдельной популяции: Наиболее простым описанием динамики отдельно взятой популяции может служить так называемая логистическая модель, предложенная П. Ферхлюстом в позапрошлом веке для описания динамики человеческого населения и Р. Пёрлом уже в 20-ые годы прошлого столетия применительно к биологическим сообществам. Согласно ей, динамика численности популяции N описывается обыкновенным дифференциальным уравнением:


,

популяция экосистема моделирование дифференциальный

где a=const представляет собой максимальную удельную скорость роста популяции, коэффициент b=const описывает внутривидовую конкурентную борьбу. Коэффициент a представляет собой разность между естественным приростом С и смертностью D в популяции: a=С–D.

Содержимое functhion.m:

function dN=func(t,N)

global alfa beta;

dN=alfa*N-beta*N^2;

Содержимое work.m:

global beta alfa;

N0=100;

figure

hold on;

xlabel('Время')

ylabel('Численность')

beta=0.025;

alfa=2.5;

Nrav=alfa/beta;

for N0=Nrav-30:10:Nrav+30

[t,NN]=ode45('functhion',[0 3], N0, [], alfa, beta);

plot(t,NN,'g')

end


Очевидно, что неограниченный рост популяции невозможен, начиная с некоторого момента, он будет тормозиться в результате внутривидовой конкуренции.

Нейтрализм:

Численность популяции первого вида не зависит от численности популяции второго вида, поэтому не имеет смысла строить график M(N), построим лишь графики M(t) и N(t).

Дифференциальные уравнения изменения численностей популяций имеют следующий вид:

Равновесие наступает при


Содержимое sistd.m:

function sist=func(t,p)

global a1 a2 b1 b2;

sist=[(a1-b1*p(1))*p(1); (a2-b2*p(2))*p(2)];

Содержимое work1.m

global a1 a2 b1 b2;

a1=2.5;

a2=3.1;

b1=0.002;

b2=0.0023;

N0=1400;

M0=1200;

[t X]=ode45('sistd',[0 5],[N0 M0]);

N=X(:,1);

M=X(:,2);

figure

hold on

grid on

plot(t,N,'b')

plot(t,M,'g')

xlabel('Время');

ylabel('Численности популяций');

legend('1ая популяция','2ая популяция')

hold off


Как видим, численности популяций не зависят друг от друга, чего и следовало ожидать.

Аменсализм:

Дифференциальные уравнения изменения численностей популяций имеют следующий вид:

Равновесие наступает при

Равновесие наступает лишь при условии

Содержимое siste.m:


function sist=func(t,p)

global a1 a2 b1 b2 b21;

if p(1)<=0

p(1)=0;

end

if p(2)<=0

p(2)=0;

end

sist=[(a1-b1*p(1))*p(1); (a2-b2*p(2)-b21*p(1))*p(2)];

Содержимое work2.m

global a1 a2 b1 b2 b21;

a1=2.5;

a2=4.2;

% a2=3.1;

b1=0.002;

b2=0.0023;

b21=0.0033;

Nrav=a1/b1;

Mrav=(a2-b21*a1/b1)/b2;

N0=500;

M0=1500;

[t X]=ode45('siste',[0 20],[N0 M0]);

N=X(:,1);

M=X(:,2);

figure

hold on

grid on

plot(t,N,'b')

plot(t,M,'g')

xlabel('Время');

ylabel('Численности популяций');

legend('1ая популяция','2ая популяция')

hold off

figure

hold on

grid on

if(a2>b21*a1/b1)

plot(N,M,'r')

plot(Nrav,Mrav,'b*')

else

plot(N,M,'')

end

plot(N0,M0,'m*')

xlabel('1ая популяция');

ylabel('2ая популяция');

hold off

a2=4.2:


Как показывают графики, численность первой популяции изменяется так, как будто она изолирована, а вот численность второй популяции стремительно падает под пагубным действием первой. Но численности обеих популяций со временем стремятся к определенным равновесным значением.

a2=3.1:


А здесь мы видим, что численность первой популяции достигла своего равновесного значения, а вторая популяция прекратила свое существование.

Комменсализм:

Дифференциальные уравнения изменения численностей популяций имеют следующий вид:

Равновесие наступает при

Очевидно, что при любых значениях коэффициентов будет наблюдаться равновесие.

Содержимое siste.m:


function sist=func(t,p)

global a1 a2 b1 b2 b21;

if p(1)<=0

p(1)=0;

end

if p(2)<=0

p(2)=0;

end

sist=[(a1-b1*p(1))*p(1); (a2-b2*p(2)+b21*p(1))*p(2)];

Содержимое work3.m аналогично work2.m


Вторая популяция до достижения равновесия растет значительно быстрее, чем первая, это происходит благодаря коэффициенту β21, хотя он имеет не такое уж большое значение.

a1=2.5;

a2=4.2;

b1=0.002;

b2=0.007;

b21=0.0033;

Конкуренция:

Дифференциальные уравнения изменения численностей популяций имеют следующий вид:

Равновесие наступает при


Равновесие наступит при

Обозначим

Равновесие наступит при

Обозначим


Со словом конкуренция ассоциируются слова: победитель, побежденный. Зададимся вопросом, в каком случае конкурентную борьбу выиграет первая популяция, а в каком – вторая.

Очевидно, что при k1>1 и k2<1 доминировать будет первая популяция. Действительно, так как

и
, то доля естественного прироста первой популяции и уменьшения численности второй популяции за счет межвидовой конкуренции больше чем доля естественного прироста второй популяции и уменьшения численности первой за счет внутривидовой конкуренции (т. к. k1>1). И делая аналогичные заключения из неравенства k2<1, можно сделать вывод, что численность первой популяции в итоге будет выше.

Рассуждая аналогично, при k2>1 и k1<1 доминировать будет вторая популяция.

В данном случае для нас больший интерес несут графики зависимости численности от времени.

Содержимое sistb.m:

function sist=func(t,p)

global a1 a2 b11 b22 b12 b21;

if p(1)<=0

p(1)=0;

end

if p(2)<=0

p(2)=0;

end

sist=[(a1-b11*p(1)-b12*p(2))*p(1); (a2-b22*p(2)-b21*p(1))*p(2)];

Содержимое work4.m


global a1 a2 b11 b22 b12 b21;

a1=0.2;

a2=0.24;

b11=0.004;

b22=0.0035;

b12=0.0033;

b21=0.0029;

k2=b12*a2/(a1*b22);

k1=a1*b21/(b11*a2);

N0=500;

M0=1500;

[t X]=ode45('sistb',[0 10],[N0 M0]);

N=X(:,1);

M=X(:,2);

figure

hold on

grid on

plot(t,N,'b')

plot(t,M,'g')

xlabel('Время');

ylabel('Численности популяций');

legend('1ая популяция','2ая популяция')

hold off

if(k2>1)

if(k1<1)

disp('Конкурентную борьбу выигрывает второй вид')