В результате вычислений получается последовательность приближенных значений x1, x2, ..., xi, ..., каждый последующий член которой ближе к корню x*, чем предыдущий. Итерационный процесс обычно прекращается при выполнении условия (4).
Начальное приближение x0 должно удовлетворять условию:
f(x0) f ¢¢(x0) > 0. (6)
В противном случае сходимость метода Ньютона не гарантируется, так как касательная будет пересекать ось абсцисс в точке, не принадлежащей отрезку [a, b]. На практике в качестве начального приближения корня x0, обычно выбирается одна из границ интервала [a, b], т.е. x0 = a или x0 = b, для которой знак функции совпадает со знаком второй производной.
Метод Ньютона обеспечивает высокую скорость сходимости при решении уравнений, для которых значение модуля производной ½f ¢(x)½вблизи корня достаточно велико, т.е. график функции y = f(x) в окрестности корня имеет большую крутизну. Если кривая y = f(x) в интервале [a, b] почти горизонтальна, то применять метод касательных не рекомендуется.
Существенным недостатком рассмотренного метода является необходимость вычисления производных функции для организации итерационного процесса. Если значение f ¢(x) мало изменяется на интервале [a, b], то для упрощения вычислений можно пользоваться формулой
, (7)т.е. значение производной достаточно вычислить только один раз в начальной точке. Геометрически это означает, что касательные в точках Ci(xi, f(xi)), где i = 1, 2, ..., заменяется прямыми, параллельными касательной, проведенной к кривой y = f(x) в начальной точке C0(x0, f(x0)), как это показано на рис. 4.
В заключение необходимо отметить, что все изложенное справедливо в том случае, когда начальное приближение x0 выбрано достаточно близким к истинному корню x* уравнения. Однако это не всегда просто осуществимо. Поэтому метод Ньютона часто используется на завершающей стадии решения уравнений после работы какого-либо надежно сходящегося алгоритма, например, метода половинного деления.
5. Метод простой итерации
Чтобы применить этот метод для решения уравнения (1) необходимо преобразовать его к виду
. Далее выбирается начальное приближение и вычисляется x1, затем x2 и т.д.:x1 = j(x0); x2 = j(x1); …; xk = j(xk-1); ...
нелинейный алгебраический уравнение корень
Полученная последовательность сходится к корню при выполнении следующих условий:
1) функция j(x) дифференцируема на интервале [a, b].
2) во всех точках этого интервала j¢(x) удовлетворяет неравенству:
0 £ q £ 1. (8)При таких условиях скорость сходимости является линейной, а итерации следует выполнять до тех пор, пока не станет справедливым условие:
.Критерий вида
,может использоваться только при 0 £ q £ ½. Иначе итерации заканчиваются преждевременно, не обеспечивая заданную точность. Если вычисление q затруднительно, то можно использовать критерий окончания вида
; .Возможны различные способы преобразования уравнения (1) к виду
. Следует выбирать такой, который удовлетворяет условию (8), что порождает сходящийся итерационный процесс, как, например, это показано на рис. 5, 6. В противном случае, в частности, при ½j¢(x)½>1, итерационный процесс расходится и не позволяет получить решение (рис. 7).Заключение
Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.
Список использованных источников
1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. - Вычислительная техника и программирование. Практикум по программированию :Практ .пособие/ -М.: Высш. шк. , 1991. - 400 с.
2. Абрамов С.А., Зима Е.В. - Начала программирования на языке Паскаль. - М.: Наука, 1987. -112 с.
3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. - М.: Высш. шк., 1990 - 479 с.
4. Гусев В.А., Мордкович А.Г. - Математика: Справ. материалы: Кн. для учащихся. - 2-е изд. - М.: Просвещение, 1990. - 416 с.