Смекни!
smekni.com

Автоматическая система регулирования температуры (стр. 2 из 4)

В исследуемой схеме исполнительным устройством является тиристорный выпрямитель, который подает напряжение на нагреватель в соответствии с управляющим воздействием, вырабатываемым регулятором.

Наиболее экономичным способом управления выпрямленным напряжением является управляемое выпрямление. В управляемых выпрямителях в качестве управляемых вентилей применяются тиристоры. Управление в выпрямителе сводится к управлению моментом отпирания тиристоров.

На управляющий электрод тиристора периодически подаются импульсы напряжения Uу, которые могут сдвигаться во времени по отношению к моменту появления положительной полуволны коллекторного напряжения Uк В результате меняется момент отпирания тиристора, начиная с которого и до конца положительной полуволны коллекторного напряжения тиристор находится в открытом состоянии. Этот сдвиг обозначается и называется углом управления. Такой метод управления называется импульсно-фазовым.

Устройство, обеспечивающее нужный угол открывания тиристоров, называется фазосдвигающим устройством (ФСУ).


Регулировочная характеристика:

Зависимость угла включения тиристоров от управляющего напряжения


Зависимость действующего значения напряжения Uн от напряжения управления Up

Зависимость мощности Pн, выделяемой в нагревателе от действующего значения напряжения Uн


Зависимость мощности Pн, выделяемой в нагревателе от угла проводимости тиристоров

Зависимость мощности Pн, выделяемой в нагревателе от управляющего напряжения Uр


2. ИССЛЕДОВАНИЕ И МОДЕЛИРОВАНИЕ ЛИНЕЙНОЙ АВТОМАТИЧЕСКОЙ СИСТЕМЫ

2.1 Нелинейности автоматической системы, их статические характеристики

2.1.1. F1(u) – нелинейность, отражающая ограничение выходного сигнала регулирующего устройства;

uр – выходной сигнал регулирующего устройства;

uрм – максимальное значение выходного сигнала регулирующего устройства;uрм= 10 В

Статическая характеристика нелинейности имеет вид:

Рис.3.Статическая характеристика нелинейности F1(u)


2.1.2F2(uр) – нелинейная характеристика фазосдвигающего устройства (ФСУ);

k0 – коэффициент пропорциональности;

Статическая характеристика нелинейности имеет вид:

Рис.4.Статическая характеристика нелинейности F2(u)

2.1.3. F3(α) – зависимость действующего значения выходного напряжения тиристорного регулятора от угла включения тиристоров;

Uc=220B;

Рис.5. Статическая характеристика нелинейности F3(u)

2.1.4. F4(uн) – нелинейная зависимость мощности электротеплового преобразователя (нагревателя) от напряжения;

Pн – мощность;

Rн – активное сопротивление нагревателя;

C – теплоемкость печи;

γ – коэффициент, моделирующий тепловое сопротивление теплоизоляции;

θ – температура;

θс- температура окружающей среды;


Рис. 6. Статическая характеристика нелинейности F4(u)

2.2 Линеаризация системы в рабочей точке

В нормально функционирующей САУ значение регулируемой и всех промежуточных величин незначительно отличается от требуемых. В пределах малых отклонений все нелинейные зависимости между величинами, входящими уравнение динамики, могут быть приближенно представлены отрезками прямых линий.

Для линеаризации системы воспользуемся общей статической характеристикой всех нелинейностей, а именно зависимостью мощности нагревателя от напряжения управления (нелинейностью типа Ограничение можно пренебречь, так как предполагается работа системы в рабочей точке). С помощью расчетов были установлены значения всех величин в рабочей точке системы, для данной зависимости это будут Pн=275 Дж и Up=1.046 В.


Суть линеаризации состоит в том, чтобы заменить нелинейную характеристику блоков системы прямой линией в окрестностях рабочей точки. Предполагая работу системы при малых отклонениях, можно пренебречь постоянной составляющей и заменить нелинейность линией типа y=k*x.

Т.к. для нашего случаю рабочая точка находится на линейном участке для линеаризации достаточно выбрать две координаты возле рабочей точки и найти уравнение прямой, проходящей через эти две точки. В итоге получаем Pн=476.19*Up.

Изобразим линию в одной системе координат с нелинейной характеристикой:


Таким образом мы заменяем нелинейные блоки системы F2, F3, F4 одним пропорциональным звеном с K=476.19. Таким образом структурная схема системы существенно упростилась:

2.3 Передаточные функции линеаризованной системы

2.3.1 П.ф. разомкнутой системы по выходной переменной относительно сигнала:


2.3.2. П.ф. замкнутой системы по выходной переменной относительно задающего и возмущающего воздействий:

;

;

2.4 Характеристическое уравнение системы:

Характеристический полином:

;
;
;

.

2.5 Анализ устойчивости линейной модели системы

По передаточной функции замкнутой системы можно судить о том, что система структурно устойчива (т.е. ее нельзя вывести из устойчивости, увеличивая общий коэффициент передачи). Объясняется это тем, что порядок п.ф. получается n=2, следовательно фазовый сдвиг не может превысить 180º без включения звена чистого запаздывания.


(Увеличенный масштаб)

Очевидно, что нет смысла определять устойчивость системы другими методами и искать запасы по амплитуде и фазе.

2.6 Определение показателя колебательности. Построение области устойчивости системы в плоскости параметров регулирующего устройства (Кр, Тр)

2.6.1 Показатель колебательности

Определяем эту величину Ммакс по формуле


P2+Q2=M2[(1+P)2+Q2], где

P- действительная часть ПФ разомкнутой системы

Q- мнимая часть ПФ разомкнутой системы.

Тогда получаем, что при ω=0 значение АЧХ максимально. Значит получаем М2=104/101=1,0297; тогда М=

2.6.2 Область устойчивости системы в области параметров ПИ регулятора.

Характеристический полином системы:

Нас интересуют переменные Tp и Кр, запишем в виде:

Определим условие устойчивости по критерию гурвица:

Δn=

=0

Получим:

Решив в Maple уравнение относительно Tp получим выражение для построений области устойчивости:


Построим график этой зависимости:

2.7 Корневой годограф системы