Нехай функція
задана таблицею. Задача зворотної інтерполяції полягає в тому, щоб по заданому значенню функції визначити відповідне значення аргументу .Якщо вузли інтерполяції
нерівновіддалені, задача легко вирішується за допомогою інтерполяційної формули Лагранжа (5). Для цього достатньо прийняти за незалежну змінну, а вважати функцією. Тоді отримаємо , (9)Розглянемо тепер задачу оберненої інтерполяції для випадку рівновіддалених вузлів інтерполяції. Припустимо, що функція f(х) монотонна і дане значення у знаходиться між
і .Замінюючи функцію
першим інтерполяційним многочленом Ньютона, одержимо: .Звідси
тобто
.Розмір
визначаємо методом послідовних наближень як границю послідовності: ,де
За початкове наближення приймаємо
. (10)Для
-го наближення маємо: . (11)На практиці ітераційний процес продовжують доти, поки не установляться значення, що відповідають необхідній точності, причому
, де – останнє зі знайдених наближень. Знайдемо , визначаємо по формулі ,звідки
Ми застосували метод ітерації для розв’язку задачі оберненої інтерполяції, користуючись першою інтерполяційною формулою Ньютона. Аналогічно можна застосувати цей спосіб і до другої формули Ньютона:
.Звідси
Позначимо
– початкове наближення.Для
-го наближення маємо: (13)Знайдемо
,визначимо
по формулі [2,3] .1.5 Інтерполяційна формула Бесселя
Часто використовується інтерполяційна формула Бесселя, яка служить для знаходження значення функції у міжвузловій точці. Для виведення цієї формули скористаємось другою інтерполяційною формулою Гаусса:
у скороченому вигляді:
де х=х0+qh.
Візьмемо 2n+2 рівновіддалених вузлів інтерполювання
x-n, x-(n-1),..., x0,..., xn-1, xn, xn+1 ,
з кроком h, і нехай
yi= f(xi), (i =-n,…,n+1),
- задані значення функції y= f(x).
Якщо вибрати за початкові значення x= x0 та y= y0, то, використовуючи вузли xk (k= 0, ±1, …,
n), будемо мати:Приймемо тепер за початкові значення х=х1 і у=у1 і використаємо вузли х1+к (к=0,
1,..., n). Тодіпричому відповідно індекси всіх різниць в правій частині формули (14) зростуть на одиницю. Замінивши в правій частині формули (14) q на q-1 і збільшивши індекси всіх різниць на 1 , отримаємо допоміжну інтерполяційну формулу
(15)Взявши середнє арифметичне формул (14) і (15), після простих перетворень отримаємо інтерполяційну формулу Бесселя
інтерполяція функція бессель програма
(16)Інтерполяційна формула Бесселя (16), як слідує з способу отримання її, представляє собою поліном, що співпадає з даною функцією y= f(x) в 2n+2 точках
x-n , x-(n-1),…, xn , xn+1.
В частинному випадку, при n=1, нехтуючи різницею ∆3y-1, отримаємо формулу квадратичної інтерполяції по Бесселю
,В формулі Бесселя всі члени, які містять різниці непарного порядку, мають множник q-
; тому при формула (16) значно спрощується :Цей спеціальний випадок формули Бесселя називається формулою інтерполювання на середину. Якщо в формулі Бесселя (3) зробити заміну по формулі
то вона приймає більш симетричний видПриклад розв’язку задачі:
Значення функції
подано у табл. 2. Знайти значення .Таблиця 2- Таблиця різниць функції
2 | -4.58579 | ||||||||
-11.68216 | |||||||||
3 | -16.26795 | -6.04989 | |||||||
-17.73205 | 0.01801 | ||||||||
4 | -34 | -6.03188 | -0.00878 | ||||||
-23.76393 | 0.00923 | 0.00504 | |||||||
5 | -57.76393 | -6.02265 | -0.00374 | -0.00321 | |||||
-29.78658 | 0.00549 | 0.00183 | 0.00218 | ||||||
6 | -87.55051 | -6.01716 | -0.00191 | -0.00103 | -0.00287 | ||||
-35.80374 | 0.00358 | 0.0008 | 0.00069 | ||||||
7 | -123.35425 | -6.01358 | -0.00111 | -0.00034 | |||||
-41.81732 | 0.00247 | 0.00046 | |||||||
8 | -165.17157 | -6.01111 | -0.00065 | ||||||
-47.82843 | 0.00182 | ||||||||
9 | -213 | -6.00929 | |||||||
-53.83772 | |||||||||
10 | -266.83772 |
Розв’язок: