Мову С++ можна використовувати як мову об'єктно-орієнтованого програмування, проте всі (або деякі) її об'єктно-орієнтовані властивості можна ігнорувати або неправильно використовувати. Нині використовується декілька різних версій мови С++, деякі з них є відкритими і загальнодоступними на базі найрізноманітніших машин.
Незважаючи на всі ці зауваження мова С++ є однією з най прийнятніших об'єктно-орієнтованих мов програмування для комерційни додатків, призначених для робочих станцій і персональних комп'ютерів.
Переваги мови С++ такі:
· Можливе виконання будь-яких дій на будь-якому рівні операційної системи;
· Мова С++ є найшвидшою з існуючих нині об'єктно-орієнтованих мов;
· Ринок програмістів, які пишуть на мові С++, достатньо великий.
· Можливість роботи на низькому рівні з пам'яттю, адресами, портами.
· Можливість створення узагальнених алгоритмів для різних типів даних, їх спеціалізація, і обчислення на етапі компіляції, використовуючи шаблони.
Недоліки С++ полягають в наступному:
· Відсутність автоматичного управління пам'яттю (складки сміття) і широко поширеневикористовування покажчиків призводять до того, що гарантії безпеки на стадії виконання досягаються насилу;
· Погана підтримка модульної. Підключення інтерфейсу зовнішнього модуля через препроцесорну вставку заголовного файлу (#include) серйозно уповільнює компіляцію, при підключенні великої кількості модулів.
· Нестача інформації про типи даних під час компіляції (CTTI).
· Мова С++ є складною для вивчення і для компіляції.
· Деякі перетворення типів неінтуїтивні. Зокрема, операція над беззнаковим і знаковим числами видає беззнаковий результат.
· Препроцесор С++ (успадковуваний від С) дуже примітивний. Це призводить з одного боку до того, що з його допомогою не можна (або важко) здійснювати деякі задачі метапрограмування, а з іншого, внаслідок своєї примітивності, він часто приводить до помилок і вимагає багато дій по обходу потенційних проблем.
· З кінця XX століття в співтоваристві С++ набуло поширення так зване метапрограмування на базі шаблонів. По суті, воно використовує особливості шаблонів C++ в цілях реалізації на їх базі інтерпретатора примітивної функціональної мови програмування, що виконується під час компіляції. Сама по собі дана можливість дуже приваблива, проте, внаслідок вищесказаного, такий код вельми важко сприймати і відладжувати.
1.3 Основи алгоритмізації
Одним з основоположних понять інформатики є алгоритм.
Алгоритм - система правив, що чітко описує послідовність дій, які необхідно виконати для вирішення задачі.
Властивості алгоритмів:
1. Дискретність;
2. Однозначність або детермінована. Кожна дія алгоритму повинна бути чіткою і однозначною. Для однакових початкових даних результат повинен бути одним і тим же.
3. Кінцівка, результативність. Алгоритм повинен призводити до рішення задачі за кінцеве число кроків.
4. Масовість або спільність. Алгоритм повинен призначатися не для однієї задачі, а цілого класу задач.
Для вирішення однієї і тієї ж задачі можуть застосовуватися декілька алгоритмів. Показником якості алгоритму є його ефективність. Ефективність алгоритму визначається часом рішення задачі і обсягом, необхідним для цього вирішення.
Алгоритм має ієрархічну структуру. Для деяких кроків алгоритму можна складати детальніші алгоритми, що містять опис даного кроку.
Ступінь деталізації залежить від мови програмування, яка вибрана для вирішення даної задачі. Мови високого рівня вимагають високий ступінь деталізації, ніж низького.
Існують різні способи запису алгоритмів:
1. Словесний опис кожного кроку на словесній мові.
2. Графічне зображення алгоритму у вигляді блок-схеми (flowchart).
У структурному програмуванні застосовуються декілька основних прийомів розробки алгоритмів.
1. Метод покрокової деталізації.
Спочатку створюється загальна структура алгоритму, а потім приробляються окрем частини.
2. Метод «зверху - вниз».
Спочатку розробляється задача на родовому рівні, всі підзадачі залишаючи у вигляді чорних ящиків, в яких чітко прописані вхідні-вихідні дані.
3. Метод «знизу - вгору».
Велика увага надається розробці даних, задачі верхнього (родового) рівня використовують вже налагоджені і протестовані підзадачі. Але в цьому випадку, якщо виникає необхідність зміни родового рівня, часто доводиться змінювати й підзадачі.
4. Метод «від центру по краях».
Виділяється найскладніша частина задачі, йде пошук ї рішення, а потім проводиться вся робота, що залишилася.
5. Модульний метод.
Має на увазі, що програма складається з окремих модулів. Під «модулем» розуміється функціонально і логічно замкнута частина програми, реалізовуюча деякі алгоритми. Модуль може бути функцією з чітко певними вхідними і виходять даними.
Основна мета використовування модуля – можливість його повторного використання для вирішення різних задач.
2 РОЗРОБКА РІШЕННЯ ЗАДАЧІ СТВОРЕННЯ БАЗИ ВІДЕОФІЛЬМІВ
2.1 Бази даних
2.1.1 Основні положення та моделі БД
Взагалі технологія баз даних як самостійна гілка розвитку інформатики з’явилася порівняно недавно: початок досліджень в цій області пов'язують з епохою великих ЕВМ – шістдесятими роками XX в. Тоді ж сформувався теоретичний апарат технології, почалася розробка програмного забезпечення. Термін «база даних» вперше з’явився в 1962г., відтоді дещо змінилося його змістовне наповнення (у зв'язку з розвитком області) і в найзагальнішому вигляді може бути сформульований так: база даних - це сукупність взаємозв'язаних даних при такій мінімальній надмірності, яка допускає їх використання оптимальним чином для одного або декількох додатків в певній предметній області людської діяльності.
Насправді сьогодні існує безліч різних визначень терміну БД, що обумовлене наявністю «можливості перетворення інформаційних масивів інших форматів в бази даних в строгому значенні цього поняття (і навпаки)". Практично будь-яку колекцію даних, які може зчитувати машина, можна при незначній доробці перевести в базу даних, що дозволяє максимально ефективно проводити інформаційний пошук за допомогою відповідної системи управління (СУБД).
Отже, база даних - структурований організований набір даних, що описують характеристики яких-небудь фізичних або віртуальних систем.
«Базою даних» часто спрощено або помилково називають Системи Управління Базами даних (СУБД). Потрібно розрізняти набір даних (власне БД) і програмне забезпечення, призначене для організації і ведення бази даних (СУБД).
Організація структури БД формується виходячи з таких міркувань:
1. Адекватність описуваному об'єкту/системі - на рівні концептуальної і логічної моделі.
2. Зручність використання для ведення обліку і аналізу даних - на рівні так званої фізичної моделі.
Види концептуальних (інфологічних) моделей БД: «сутність - зв'язок», семантичні, графські.
Види логічних (даталогічних) моделей БД:
1. Документальні (архіви) - орієнтовані на формат документа, дескрипторні, тезаурусні.
2. Фактографічні (картотеки):
- теоретико-графські: ієрархічна модель, мережева модель.
- теоретико-множинні: реляційна модель (ER-модель), багатомірна модель.
- об'єктно-орієнтовані: об'єктна модель.
- засновані на інвертованих файлах.
На рівні фізичної моделі електронна БД є файлом або їх набором у форматі TXT, CSV, Excel, DBF, XML або в спеціалізованому форматі конкретної СУБД. Також в СУБД в поняття фізичної моделі включають спеціалізовані віртуальні поняття, існуючи в її рамках - таблиця, табличний простір, сегмент, куб, кластер і т.д.
Нині найбільше поширення набули реляційні бази даних. Картотеками користувалися до появи електронних баз даних. Мережеві та ієрархічні бази даних вважаються застарілими, об'єктно-орієнтовані поки ніяк не стандартизовані і не набули широкого поширення. Деяке відродження одержали ієрархічні бази даних у зв'язку з появою і поширенням XML.
2.1.2 Типи БД
У класичній теорії виділяють три основні типи баз даних: ієрархічні, мережеві та реляційні. Останніми роками, з широким розповсюдженням об'єктно-орієнтованих мов програмування, стали активно розвиватися об'єктні бази даних.
Першими з’явилися ієрархічні бази даних. Інформація в ієрархічній базі організована за принципом деревовидної структури, у вигляді відносин предок/нащадок. Кожен запис може мати не більш одного батьківського запису і декілька підлеглих. Зв'язки записів реалізуються у вигляді фізичних покажчиків з одного запису на інший. Основний недолік ієрархічної структури бази даних - неможливість реалізувати відносини "багато до багатьох", а також ситуації, коли запис має декілька предків.
Мережева структура баз даних з’явилася як розвиток ієрархічної. Треба підкреслити, що термін «мережева» уживається тут в зовсім незвичному для епохи интернета значенні. Це слово підкреслює модель зв'язків даних в базі, коли кожен запис може знаходитися у відносинах «багато до багатьох» з іншими записами, що робить графічну модель бази схожою на рибальську мережу. Розробляти серйозні додатки в рамках мережевої моделі бази даних досить важко, причому складність розробки при ускладненні задач зростає в геометричній прогресії.
Справжній прорив в розвитку баз даних відбувся тоді, коли збільшена потужність комп'ютерів дозволила повною мірою реалізувати реляційну модель даних. Теорія реляційних баз даних була розроблена доктором Коддом на початку 70-х років 20 століття. У реляційних базах дані зберігаються у вигляді таблиць, що складаються з рядків і стовпців. Стовпці таблиць реляційної бази можуть містити скалярні дані фіксованого типу - числа, рядка, дати... Таблиці в реляційній базі даних можуть бути зв'язані відносинами "один до одного" або "один до багатьох".