Смекни!
smekni.com

Абсолютна та відносна похибка (стр. 2 из 2)


Тоді

i

.

Звідси

,

aбo

.

Розділивши нерівність на u, одержимо


Врахувавши зауваження, замінимо

на відносну похибку
діленого,
- на відносну похибку
дільника,
- на відносну похибку
частки. Отримаємо

. (8)

За граничну відносну похибку частки можна прийняти

.

5. Похибки степеня. Нехай А = (х + ∆ х)т , и = хт , де т – натуральне число, х > 0. Використовуючи похибки добутку, одержуємо

|∆u| < mxm - 1|∆x|, δ ≤ mδ1,

де δ – відносна похибка степеня; δ1 – відносна похибка аргументу х. Тому за граничні абсолютну та відносну похибки степеня можемо прийняти

∆u= mxm - 1∆x, δu= mδx . (9)

Із наведених похибок арифметичних операцій випливає, що операції додавання та віднімання (при великій різниці між числами) не погіршують точності результату порівняно з точністю алгебраїчних доданків.


Рекомендована література

1. Цегелик Г.Г. Чисельні методи: Підручник. – Львів: Видавничий центр ЛНУ ім. І. Франка, 2004. – 408 с.

2. Коссак О., Тумашова О., Коссак О. Методи наближених обчислень: Навч. посіб. – Львів: Бак, 2003. – 168 с.

3. Анджейчак І.А., Федю Є.М., Анохін В.Є. і ін. Практикум з обчислювальної математики. Основні числові методи. Частина І. – Навч. посіб. Львів: Вид-во ДУ «Львівська політехніка», 2000. – 100 с.

4. Дудикевич А.Т., Левицькa С.М., Шахно С.М. Практична реалізація методів розв’язування нелінійних рівнянь і систем: Навч.-метод. посібн. – Львів: ВЦ ЛНУ ім.. І.Франка, 2007. – 78 с.