Смекни!
smekni.com

Мониторы. Файловые системы (стр. 2 из 4)

III. Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ «ENIAC».

1887 г. – создание Г. Холлеритом в США первого счетно-аналитического комплекса, состоящего из ручного перфоратора, сортировочной машины и табулятора. Одно из наиболее известных его применений – обработка результатов переписи населения в нескольких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, положивших начало известной корпорации IBM.

Начало – 30-е годы XX века – разработка счетноаналитических комплексов. Состоят из четырех основных устройств: перфоратор, контрольник, сортировщик и табулятор. На базе таких комплексов создаются вычислительные центры.

В это же время развиваются аналоговые машины.

1930 г. – В. Буш разрабатывает дифференциальный анализатор, использованный в дальнейшем в военных целях.

1937 г. – Дж. Атанасов, К. Берри создают электронную машину ABC.

1944 г. – Г. Айкен разрабатывает и создает управляемую вычислительную машину MARK-1. В дальнейшем было реализовано еще несколько моделей.

1957 г. – последний крупнейший проект релейной вычислительной техники – в СССР создана РВМ-I, которая эксплуатировалась до 1965 г.

IV. Электронный этап, начало которого связывают с созданием в США в конце 1945 г. электронной вычислительной машины ENIAC.

В истории развития ЭВМ принято выделять несколько поколений, каждое из которых имеет свои отличительные признаки и уникальные характеристики. Главное отличие машин разных поколений состоит в элементной базе, логической архитектуре и программном обеспечении, кроме того, они различаются по быстродействию, оперативной памяти, способам ввода и вывода информации и т.д. Эти сведения обобщены ниже в таблице на стр. 6. (табл. 1)

ЭВМ пятого поколения должны удовлетворять следующим качественно новым функциональным требованиям:

1) обеспечивать простоту применения ЭВМ путем эффективных систем ввода / вывода информации, диалоговой обработки информации с использованием естественных языков, возможности обучаемости, ассоциативных построений и логических выводов (интеллектуализация ЭВМ);

2) упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; усовершенствовать инструментальные средства разработчиков;

3) улучшить основные характеристики и эксплуатационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.

Поколения ЭВМ Характеристики
I I II IV
Годы применения 1946–1958 1959–1963 1964–1976 1977–…
Элементарная база Эл. лампа, реле Транзистор, параметрон ИС, БИС СБИС
Kоличество ЭВМ в мире (шт.) Десятки Тысячи Десятки тысяч Более 107
Быстродействие (операций в секунду) До 105 До 106 До 107 Более 107
Объем оперативной памяти До 64 Kб До 512 Kб До 16 Мб Более 16 Мб
Характерные типы ЭВМ поколения Малые, средние, большие, специальные Большие, средние, мини- и микроЭВМ СуперЭВМ, ПK, специальные, общие, сети ЭВМ
Типичные модели поколения EDSAC, ENIAC, UNIVAC, БЭСМ RCA-501, IBM 7090, БЭСМ-6 IBM/360, PDP, VAX, ЕС ЭВМ, СМ ЭВМ IBM/360, SX-2, IBM PC/XT/AT, PS/2, Cray
Носитель информации Перфокарта, перфолента Магнитная лента Диск Гибкий, жесткий, лазерный диск, др.
Характерное программное обеспечение Kоды, автокоды, ассемблеры Языки программирования, АСУ, АСУТП ППП, СУБД, САПР, ЯПВУ БЗ, ЭС, системы параллельного программирования, др.

2. Устройства вывода информации: мониторы

Монитор – универсальное устройство визуального отображения всех видов информации состоящее из дисплея и устройств предназначенное для вывода текстовой, графической и видео информации на дисплей. Различают алфавитно-цифровые и графические мониторы, а также монохромные мониторы и мониторы цветного изображения – активно-матричные и пассивно-матричные ЖКМ.

Век мониторов с электронно-лучевой трубкой неотвратимо уходит в прошлое. Невероятно, но за каких-то полгода многостраничные журнальные обзоры новейших моделей традиционных мониторов уступили место обстоятельным описаниям свойств плоскопанельных дисплеев, прежде всего жидкокристаллических, а теперь и плазменных. Да, технологии не стоят на месте, и вот уже плазма, высшее энергетическое состояние вещества, работает там, где требуется молниеносная скорость обмена информацией, поразительная оперативность, ослепительная новизна. Однако коммерческий цикл любого изобретения не вечен, и вот уже производители, запустившие массовое производство LCD-панелей, готовят следующее поколение технологий изображения информации. Устройства, которые придут на замену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer – ветоизлучающие полимеры), только выходят из научных лабораторий, а другие, например, на основе плазменной технологии, уже представляют собой законченные коммерческие продукты. Хотя плазменный эффект известен науке довольно давно (он был открыт в лабораториях Иллинойского университета в 1966 году), плазменные панели появились только в 1997 году в Японии. Почему так произошло? Это связано и с дороговизной таких дисплеев, и с их ощутимой «прожорливостью» – потребляемой мощностью. Хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар. Несравненное качество изображения и уникальные конструктивные особенности делают информационные панели на плазменной технологии особенно привлекательными для государственного и корпоративного сектора, здравоохранения, образования, индустрии развлечений.

По способу формирования изображения мониторы можно разделить на группы:

1. Жидкокристаллические экраны

2. Плазменные дисплеи

3. C электронно-лучевой трубкой(ЭЛТ)

Классификация мониторов

1. По виду выводимой информации:

2. алфавитно-цифровые

3. дисплеи, отображающие только алфавитно-цифровую информацию

4. дисплеи, отображающие псевдографические символы

5. интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных

6. графические

7. векторные

8. растровые

По строению:

1. ЭЛТ – на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

2. ЖК – жидкокристаллические мониторы (англ. liquid crystal display, LCD)

3. Плазменный – на основе плазменной панели

4. Проекционный – видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант – через зеркало или систему зеркал)

5. OLED-монитор – на технологии OLED (англ. organic light-emitting diode – органический светоизлучающий диод)

6. Виртуальный ретинальный монитор – технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза

7. Простой монитор – простой монитор для просмотра фильмов.

По типу устройства использования

1. в телевизорах

2. в компьютерах

3. в телефонах

4. в калькуляторах

5. в инфокиосках

По цветности мониторы, как правило, разделяют на:

1. цветные;

2. монохромные;

Плазменные дисплеи

Разработка плазменных дисплеев, начатая еще в 1968 г., базировалась на применении плазменного эффекта, открытого в Иллинойсском университете в 1966 г.

Сейчас принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества (примерно так же, как работают неоновые лампы). Мощные магниты, входящие в состав динамических излучателей звука, расположенных рядом с экраном, никак не влияют на изображение, поскольку в плазменных устройствах (как и в ЖК) отсутствует такое понятие, как электронный луч, а заодно и все элементы ЭЛТ, на которые так воздействует вибрация.

Рис. 1

информатика файловый информация логический

Рис. 2


Формирование изображения в плазменном дисплее происходит в пространстве шириной примерно 0,1 мм между двумя стеклянными пластинами, заполненном смесью благородных газов – ксенона и неона. (Рис. 1). На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники, или электроды, а на заднюю – ответные проводники. Подавая на электроды электрическое напряжение, можно вызвать пробой газа в нужной ячейке, сопровождающийся излучением света, который и формирует требуемое изображение. Первые панели, заполнявшиеся в основном неоном, были монохромными и имели характерный оранжевый цвет. Проблема создания цветного изображения была решена путем нанесения в триадах соседних ячеек люминофоров основных цветов – красного, зеленого и синего и подбора газовой смеси, излучающей при разряде невидимый глазом ультрафиолет, который возбуждал люминофоры и создавал уже видимое цветное изображение (три ячейки на каждый пиксель) (Рис. 2).

В современных плазменных дисплеях, используемых в качестве мониторов для компьютера, используется так называемая технология – plasmavision – это множество ячеек, иначе говоря пикселей, которые состоят из трех субпикселей, передающих цвета – красный, зеленый и синий.

Газ в плазменном состоянии используется, чтобы реагировать с фосфором в каждом субпикселе, чтобы произвести цветной цвет (красный, зеленый или синий). Пиксел в плазменном (газоразрядном) дисплее напоминает обычную люминесцентную лампу – ультрафиолетовое излучение электрически заряженного газа попадает на люминофор и возбуждает его, вызывая видимое свечение. В некоторых конструкциях люминофор наносится на переднюю поверхность ячейки, в других – на заднюю, а передняя поверхность при этом изготавливается прозрачной. Каждый субпиксел индивидуально управляется электроникой и производит более чем 16 миллионов различных цветов.