в) Переносные панели.
Позволяют переносить их с места на место, благодаря тому, что подключаются к системе с помощью беспроводной связи. Этот тип панелей работает от специальных аккумуляторных батарей и требует периодической подзарядки. Для этих целей используются такие же подставки, как и у настольных панелей, но если настольная панель жестко закреплена на подставке, то переносная панель легко снимается и надевается. Переносные панели также имеют разное оформление и размеры. Исходя из эргономических и экономических показателей, наиболее удобными считаются панели с размером сенсорного экрана равным 10 дюймам. Панели с размером экрана 4 дюйма достаточно дорогие и легко могут быть заменены карманными компьютерами(Pocket PC), кроме того, элементы интерфейса на таких панелях получаются достаточно миниатюрными, что затрудняет их использование. Панели с размером сенсорного экрана более 10 дюймов проигрывают 10 дюймовым панелям по эргономическим показателям
3. ИНТЕРФЕЙСЫ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ
сеть интернет умный дом
По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами, шины ATA, SCSI и все шины расширения. В последовательном интерфейсе биты передаются друг за другом, обычно по одной (возможно, и двухпроводной) линии. Эта линия может быть как однонаправленной (например, в RS-232C, реализуемой СОМ-портом, шине Fire Wire, SPI, JTAG), так и двунаправленной (USB, 12С).
При рассмотрении интерфейсов важным параметром является пропускная способность. Технический прогресс приводит к неуклонному росту объемов передаваемой информации.
Вполне очевидно, что при одинаковом быстродействии приемопередающих цепей и пропускной способности соединительных линий по скорости передачи параллельный интерфейс должен превосходить последовательный. Однако повышение производительности за счет увеличения тактовой частоты передачи данных упирается в волновые свойства соединительных кабелей. В случае параллельного интерфейса начинают сказываться задержки сигналов при их прохождении по линиям кабеля и, что самое неприятное, задержки в разных линиях интерфейса могут быть различными вследствие неидентичности проводов и контактов разъемов. Для надежной передачи данных временные диаграммы обмена строятся с учетом возможного разброса времени прохождения сигналов, что является одним из факторов, сдерживающих рост пропускной способности параллельных интерфейсов.
Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию DDR (Dual Data Rate). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимались только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних и тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса АТА (режимы UltraDMA) и прошла уже и по SCSI (UltralSO и выше), и по памяти (DDR SDRAM), и по системной шине процессоров (Pentium 4).
Немаловажен для интерфейса контроль достоверности передачи данных, который, увы, имеется далеко не везде. «Ветераном» контроля является шина SCSI с ее битом паритета, контроль паритета применяется и в последовательных интерфейсах, и в шине PCI. Шина ISA в этом плане беззащитна, как и ее «потомок» — интерфейс АТА, в котором до UltraDMA контроля достоверности не было. В новых интерфейсах контролю достоверности уделяется серьезное внимание, поскольку они, как правило, рассчитываются на экстремальные условия работы (высокие частоты, большие расстояния и помехи). Контроль достоверности может производиться и на более высоких протокольных уровнях (контроль целостности пакетов и их полей), но на аппаратном уровне он работает, естественно, быстрее.
Различают три возможных режима обмена устройств:
-Дуплексный,
-Полудуплексный
-Симплексный.
Дуплексный режим позволяет по одному каналу связи одновременно передавать информацию в обоих направлениях. Он может быть асимметричным, если значения пропускной способности в направлениях «туда» и «обратно» существенно различаются, или симметричным. Полудуплексный режим позволяет передавать информацию «туда» и «обратно» поочередно. Симплексный односторонний (во встречном направлении передаются только вспомогательные сигналы интерфейса).
Другим немаловажным параметром интерфейса является допустимое удаление соединяемых устройств. Оно ограничивается как частотными свойствами кабелей, так и помехозащищенностью интерфейсов. Часть помех возникает от соседних линий интерфейса — это перекрестные помехи, защитой от которых может быть применение витых пар проводов для каждой линии. Другая часть помех вызывается искажением уровней сигналов.
Существенным свойством является возможность «горячего» подключения/отключения или замены устройств (Hot Swap), причем в двух аспектах. Во-первых, это безопасность переключений «на ходу» как для самих устройств и их интерфейсных схем, так и для целостности хранящихся и передаваемых данных и, наконец, для человека. Во-вторых, это возможность использования вновь подключенных устройств без перезагрузки системы, а также продолжения устойчивой работы системы при отключении устройств. Далеко не все внешние интерфейсы поддерживают «горячее подключение» в полном объеме, так, например, зачастую сканер с интерфейсом SCSI должен быть подключен к компьютеру и включен до загрузки ОС, иначе он не будет доступен системе. С новыми шинами USB и Fire Wire проблем «горячего подключения» не возникает. Для внутренних интерфейсов «горячее подключение» несвойственно. Это касается и шин расширения, и линеек памяти, и даже большинства дисков АТА и SCSI. «Горячее подключение» поддерживается для шин расширения промышленных компьютеров, а также в специальных конструкциях массивов устройств хранения8.
3.2 Скоростные интерфейсы LVDS и M-LVDS
Разрядность и быстродействие контроллеров, процессоров и изделий на их основе постоянно возрастают. Производительность всей системы сильно зависит от скорости обмена данными между устройствами. В последнее время для этого всё чаще используют высокоскоростные интерфейсы LVDS (Low-Voltage Differential Signaling или дифференциальный метод передачи с использованием сигналов низкого уровня) и M-LVDS (Multipoint-LVDS или многоточечный двунаправленный способ обмена информацией). Они позволяют организовать сверхскоростной обмен между микросхемами на печатной плате, а также эффективное взаимодействие между блоками и стойками. На передающей стороне параллельный код преобразуется в последовательный. На принимающей - выполняется обратное преобразование информации. Такой способ обмена позволяет существенно уменьшить количество соединительных проводников, сократить габариты разъемов при увеличении надежности и уменьшении стоимости всего комплекса.
На рис. 1 показаны соотношения скорости обмена и допустимого расстояния для разных интерфейсов.
Рисунок 1. Соотношения между скоростью обмена и расстоянием для разных интерфейсов
Из рис. 1 очень хорошо видно, что каждый тип интерфейса имеет свою нишу и предназначен для определенных областей применения. Основное назначение любого последовательного интерфейса - "сворачивание" параллельного кода в скоростной последовательный канал и "разворачивание" последовательного кода в параллельный на приемной стороне.
При расстояниях до 30 м и скоростях передачи менее 50 Мбит/с обычно используют интерфейсы стандартов TIA/EIA-422 (RS-422, multidrop) и TIA/EIA-485 (RS-485, multipoint). Выходные дифференциальные сигналы высокого уровня, чувствительные приемники и работоспособность при уровнях помех до 7 В - их положительные качества для обеспечения эффективного обмена данными между удаленным оборудованием. Для скоростей передачи более 50 Мбит/с или в устройствах, где очень важно низкое потребление энергии, применяют интерфейсы LVDS или M-LVDS. Передача и прием со скоростью около 10 Гбит/с обеспечивается эмиттерно-связанной логикой (ECL - emitter-coupled logic) или положительной эмиттерно-связанной логикой (PECL - positive ECL). Однако такая высокая скорость обмена достигается за счет увеличения стоимости при сильном росте потребляемой мощности.
Немаловажным параметром является экономичность каждого типа интерфейса. На рис. 2 показана диаграмма потребления мощности некоторыми интерфейсами и типами логики.
Рисунок 2. Сравнение потребляемой мощности для разных способов передачи и приема данных
Стоит отметить, что LVDS и M-LVDS занимают лидирующие позиции по этому параметру. Вдобавок к этому, только что отмеченные интерфейсы работоспособны при самых низких питающих напряжениях среди показанных на рис. 2.
Благодаря токовому выходу оконечного каскада, потребляемая мощность LVDS и M-LVDS практически не зависит от скорости передачи информации. Эти положительные особенности особенно важны для автономных и портативных устройств. Сигналы низкого уровня и дифференциальная схема передачи существенно облегчают решение проблемы электромагнитной совместимости, что является плюсом рассматриваемых интерфейсов LVDS и M-LVDS.