Смекни!
smekni.com

Использование качественных методов теории принятия решений в процессе построения UFO-моделей (стр. 4 из 8)

Сконструированные критерии, имеющие порядковые шкалы оценок, используются для решения первоначальной задачи многокритериального выбора. После перехода от числовых или вербальных оценок базовых показателей к критериальным оценкам может случиться так, что варианты станут сравнимыми и, более того, некоторый вариант (или некоторые) окажется наилучшим. Если же наилучший вариант сразу выделить нельзя, то для его нахождения можно воспользоваться одним из методов вербального анализа решений, например ПАРК [14] или КОМПАС [39]. В этом случае размерность описания такой новой задачи многокритериального выбора и сложность ее решения будут существенно меньше исходной.

Рассмотренный подход позволяет решать достаточно широкий круг задач выбора различных технических и программных средств. С каждым годом с учетом многообразия новых аппаратных решений и появления новых программных продуктов, специалистам в области информационных технологий становится все сложнее отслеживать новинки и, соответственно, правильно осуществлять выбор сложных технических систем. В работе [40] в качестве примера подобной технической системы рассматриваются вычислительные кластеры. Подобные задачи особенно актуальны для организаций, предоставляющих консалтинговые услуги в области информационных технологий.

Подход позволяет ЛПР существенно сократить время, необходимое для выбора наиболее предпочтительного вычислительного кластера, и воспользоваться услугами экспертов. При этом нет необходимости самостоятельно проводить достаточно сложное тестирование многочисленных вариантов конфигураций вычислительных кластеров совместно с программным обеспечением, что, зачастую, просто невозможно, исходя из чисто технических и организационных аспектов.

В рамках рассматриваемого подхода в работе [40] предложена процедура построения составных критериев путем агрегирования более простых критериев. Важной особенностью процедуры является возможность сформировать разные наборы критериев, с тем, чтобы сравнить полученные результаты для разных вариантов с целью оценки качества выбора. Методика агрегирования базовых характеристик объекта в составные критерии оценки была опробована на примере решения практической задачи многокритериального выбора вычислительных кластеров.

1.5 Постановка задачи

Проведенный анализ современного состояния проблемы показывает, что:

–результатом моделирования системы может быть несколько конфигураций, соответствующих заданной контекстной диаграмме;

–существует множество подходов к решению задачи выбора лучшей конфигурации;

–результат выбора зависит от набора критериев и их шкал оценок.

Целью данной магистерской аттестационной работы является исследование возможности использования качественных методов принятия решений в процессе построения UFO-моделей.

Достижение сформулированной цели связано с решением следующих задач:

–разработка подхода к определению критериев оценки UFO-модели;

–исследование UFO-моделей на основании предложенных критериев;

–осуществление классификации UFO-моделей в MicrosoftExcel;

–применение полученных результатов в процессе UFO-моделирования.


2. Многокритериальная оценка UFO-модели

2.1 Критерии оценки UFO-модели

Рассмотрим систему с двумя входами и двумя выходами (рис. 2.1).

Рисунок 2.1 – Система с двумя входами и двумя выходами

Входы этой системы могут быть соединены с ее выходами с помощью некоторых других подсистем. Существует много вариантов соединения входов с выходами. По каким критериям можно оценить эти варианты?

Одним из таких критериев может быть количество подсистем. Чем меньше количество подсистем, тем лучше. Максимальное количество подсистем определяется, например, требованиями заказчика проектируемой системы.

Другим критерием может являться количество внутренних связей. Чем меньше количество внутренних связей, тем лучше. Максимальное количество внутренних связей задается также при проектировании системы.

Наконец, третьим критерием может выступать количество внешних («висящих») связей, которые могут образоваться у системы как результат процесса соединения ее входов и выходов с помощью подсистем, имеющих избыточное количество входов и выходов.

Таким образом, исходя из сформулированных трех критериев, наилучшим вариантом реализации системы, изображенной на рис. 2.1, является вариант, показанный на рис. 2.2.

Рисунок 2.2 – Наилучший вариант реализации системы


Рассмотренный пример показывает, что критерии «количество подсистем» и «количество висящих связей» не зависят от заданной системы. Для любой системы наилучшим значением критерия «количество подсистем» будет 1, а наилучшим значением критерия «количество висящих связей» будет 0.

Что касается критерия «количество внутренних связей», то его наилучшее значение полностью определяется количеством входов и выходов заданной системы (точнее, их суммой). В рассмотренном примере наилучшим значением критерия «количество внутренних связей» будет 4.

Как было сказано выше, максимальные допустимые значения рассматриваемых критериев задаются требованиями заказчика проектируемой системы. Пусть максимально допустимым значением критерия «количество подсистем» будет 3, критерия «количество внутренних связей» – 6, а «количество висящих связей» – 2. Тогда шкалы рассматриваемых критериев будут иметь вид, показанный на рис. 2.3.

Рисунок 2.3 – Порядковые шкалы значений критериев

При таких значениях критериев общее количество разных гипотетически возможных вариантов реализации системы, показанной на рис. 2.1, равно 33 = 27. Наилучший вариант реализации этой системы, показанный на рис. 2.2, формально можно описать вектором (1, 4, 0). Здесь и далее значение первого компонента вектора показывает количество подсистем, значение второго компонента – количество внутренних связей, третьего – количество висящих связей. Например, вектор (2, 5, 1) формально описывает вариант реализации системы, состоящей из двух подсистем, пяти внутренних связей и одной висящей связи [41].

2.2 UFO-модели с двумя лучшими значениями по критериям

Рассмотрим все гипотетически возможные варианты реализации системы, показанной на рис. 2.1, исходя из сформулированных выше критериев и их шкал.

Наилучший вариант (1, 4, 0) реализации этой системы показан на рис. 2.2.

Зафиксируем значения первых двух компонент этого варианта, и чуть ухудшим значение последнего компонента. Получим вариант (1, 4, 1) реализации системы (рис. 2.4).

Рисунок 2.4 – Система с одной висящей связью

На рис. 2.4 изображена система с одной висящей выходной связью. Также варианту (1, 4, 1) реализации системы может соответствовать и система с одной висящей входной связью.

Продолжим ухудшать значение последнего компонента при фиксированных лучших значениях первых двух компонентов. Получим вариант (1, 4, 2) реализации системы (рис. 2.5).

Рисунок 2.5 – Система с двумя висящими связями

На рис. 2.5 изображена система с одной висящей входной связью и одной висящей выходной связью. Также варианту (1, 4, 2) реализации системы может соответствовать как система с двумя висящими входными связями, так и система с двумя висящими выходными связями.

Далее ухудшать значение последнего компонента невозможно (достигнуто последнее самое плохое значение по критерию «количество висящих связей»). Поэтому теперь зафиксируем самые лучшие значения первого и последнего компонента, и чуть ухудшим значение второго компонента. Получим формальный вариант (1, 5, 0) реализации системы (рис. 2.6).

Рисунок 2.6 – Система с одной «петлей»

Полученный формальный вариант реализации системы можно считать очень неудачным. Действительно, в этом случае подсистема на выход дает результат, который использует только она сама!

Продолжим ухудшать значение второго компонента при фиксированных лучших значениях первого и последнего компонентов. Получим вариант (1, 6, 0) реализации системы (рис. 2.7).

Рисунок 2.7 – Система с двумя «петлями»

Полученный формальный вариант реализации системы можно считать еще более неудачным, чем рассмотренный выше. В этом случае подсистема выдает уже два результата, которые использует только она сама!

Далее ухудшать значение второго компонента невозможно (достигнуто последнее самое плохое значение по критерию «количество внутренних связей»). Поэтому теперь зафиксируем самые лучшие значения второго и третьего компонента, и чуть ухудшим значение первого компонента. Получим формальный вариант (2, 4, 0) реализации системы (рис. 2.8).