Смекни!
smekni.com

Использование качественных методов теории принятия решений в процессе построения UFO-моделей (стр. 5 из 8)

Рисунок 2.8 – Система с двумя подсистемами

На рис. 2.8 изображена система, у которой верхний вход связан с верхним выходом, а нижний вход – с нижним выходом. Также варианту (2, 4, 0) реализации системы может соответствовать и система, у которой верхний вход связан с нижним выходом, а нижний вход – с верхним выходом.

Продолжим ухудшать значение первого компонента при фиксированных лучших значениях последних двух компонентов. Получим вариант (3, 4, 0) реализации системы (рис. 2.9).

Рисунок 2.9 – Система с тремя подсистемами

Полученный формальный вариант реализации системы можно считать не очень удачным. Действительно, в этом случае с состав системы входит подсистема, которая ничего не делает!

Возможны и гораздо более худшие версии формального варианта (3, 4, 0) реализации, при которых полученная система является частично или полностью неработоспособной! Соответствующие примеры показаны на рис. 2.10.

Рисунок 2.10 – Частично и полностью неработоспособные системы

Далее ухудшать значение первого компонента невозможно (достигнуто последнее самое плохое значение по критерию «количество подсистем»).

Таким образом, из шести формально возможных вариантов реализации системы с двумя лучшими значениями по некоторым фиксированным критериям только один вариант (2, 4, 0) оказался работоспособным. Варианты (1, 5, 0) и (1, 4, 1) обладают по крайней мере одним недостатком, а варианты (1, 4, 2) и (1, 6, 0) – двумя. Вариант же (3, 4, 0) может обладать как одним недостатком, так и быть частично или даже полностью неработоспособным.

Справедливости ради стоит отметить, что и работоспособный вариант (2, 4, 0) тоже обладает полностью неработоспособной версией (рис. 2.11)!

Рисунок 2.11 – Изолированная замкнутая система

2.3 UFO-модели с одним лучшим значением по некоторому

критерию

Зафиксируем лучшее значение по первому критерию, а по второму и третьему – средние значения. Рассмотрим вариант (1, 5, 1).

Рисунок 2.12 – Система с одной «петлей» и висящей связью

На рис. 2.12 изображена система с одной висящей входной связью. Также варианту (1, 5, 1) реализации системы может соответствовать и система с одной висящей выходной связью. Вариант (1, 5, 1) обладает всеми недостатками своих «родителей» – вариантов (1, 4, 1) и (1, 5, 0) (рис. 2.4 и рис. 2.6 соответственно).

Ухудшим значение третьего критерия. Получим вариант (1, 5, 2).

Рисунок 2.13 – Система с одной «петлей» и двумя висящими связями

На рис. 2.13 изображена система с одной висящей входной связью и одной висящей выходной связью. Также варианту (1, 5, 2) реализации системы может соответствовать как система с двумя висящими входными связями, так и система с двумя висящими выходными связями. Вариант (1, 5, 2) также обладает всеми недостатками своих «родителей» – вариантов (1, 4, 2) и (1, 5, 0) (рис. 2.5 и рис. 2.6 соответственно).

Теперь рассмотрим вариант (1, 6, 1).

Рисунок 2.14 – Система с двумя «петлями» и одной висящей связью

На рис. 2.14 изображена система с одной висящей выходной связью. Также варианту (1, 6, 1) реализации системы может соответствовать и система с одной висящей входной связью. Вариант (1, 6, 1) обладает всеми недостатками своих «родителей» – вариантов (1, 4, 1) и (1, 6, 0) (рис. 2.4 и рис. 2.7 соответственно).

Ухудшим значение третьего критерия. Получим вариант (1, 6, 2).

Рисунок 2.15 – Система с двумя «петлями» и двумя висящими связями

На рис. 2.15 изображена система с одной висящей входной связью и одной висящей выходной связью. Также варианту (1, 6, 2) реализации системы может соответствовать как система с двумя висящими входными связями, так и система с двумя висящими выходными связями. Вариант (1, 6, 2) также обладает всеми недостатками своих «родителей» – вариантов (1, 4, 2) и (1, 6, 0) (рис. 2.5 и рис. 2.7 соответственно).

Зафиксируем теперь лучшее значение по второму критерию, а по первому и третьему – средние значения. Рассмотрим вариант (2, 4, 1).

Рисунок 2.16 – Система с двумя подсистемами и одной висящей связью

На рис. 2.16 изображена система с одной висящей выходной связью. Также варианту (2, 4, 1) реализации системы может соответствовать и система с одной висящей входной связью. На рис. 2.16 изображена система, у которой верхний вход связан с верхним выходом, а нижний вход – с нижним выходом. Также варианту (2, 4, 1) реализации системы может соответствовать и система, у которой верхний вход связан с нижним выходом, а нижний вход – с верхним выходом.

Ухудшим значение третьего критерия. Получим вариант (2, 4, 2).

Рисунок 2.17 – Система с двумя подсистемами и двумя висящими

связями

На рис. 2.17 изображена система с одной висящей входной связью и одной висящей выходной связью. Также варианту (2, 4, 2) реализации системы может соответствовать как система с двумя висящими входными связями, так и система с двумя висящими выходными связями. На рис. 2.17 изображена система, у которой верхний вход связан с верхним выходом, а нижний вход – с нижним выходом. Также варианту (2, 4, 2) реализации системы может соответствовать и система, у которой верхний вход связан с нижним выходом, а нижний вход – с верхним выходом.

Теперь рассмотрим вариант (3, 4, 1).

Рисунок 2.18 – Система с тремя подсистемами и одной висящей связью

На рис. 2.18 изображена система с одной висящей выходной связью. Также варианту (3, 4, 1) реализации системы может соответствовать и система с одной висящей входной связью.

Ухудшим значение третьего критерия. Получим вариант (3, 4, 2).

Рисунок 2.19 – Система с тремя подсистемами и двумя висящими

связями

На рис. 2.19 изображена система с одной висящей входной связью и одной висящей выходной связью. Также варианту (3, 4, 2) реализации системы может соответствовать как система с двумя висящими входными связями, так и система с двумя висящими выходными связями.

Зафиксируем теперь лучшее значение по третьему критерию, а по первому и второму – средние значения. Рассмотрим вариант (2, 5, 0).

Рисунок 2.20 – Система с двумя связанными подсистемами


На рис. 2.20 изображена система, у которой верхний вход связан с верхним выходом, а нижний вход – с нижним выходом. Также варианту (2, 5, 0) реализации системы может соответствовать и система, у которой верхний вход связан с нижним выходом, а нижний вход – с верхним выходом.

Ухудшим значение второго критерия. Получим вариант (2, 6, 0).

Рисунок 2.21 – Система с двумя дважды связанными подсистемами

На рис. 2.21 изображена система, у которой верхний вход связан с верхним выходом, а нижний вход – с нижним выходом. Также варианту (2, 6, 0) реализации системы может соответствовать и система, у которой верхний вход связан с нижним выходом, а нижний вход – с верхним выходом.

Теперь рассмотрим вариант (3, 5, 0).

Рисунок 2.22 – Система с тремя несвязанными подсистемами

Полученный вариант реализации системы можно считать не очень удачным. случае с состав системы входит подсистема, из которой ничего не выходит!

Ухудшим значение второго критерия. Получим вариант (3, 6, 0).

Рисунок 2.23 – Система с тремя связанными подсистемами

Таким образом, из двенадцати формально возможных вариантов реализации системы с одним лучшим значением по некоторому фиксированному критерию только три варианта (2, 5, 0), (2, 6, 0) и (3, 6, 0) оказались работоспособными. Варианты (3, 5, 0) и (2, 4, 1) обладают по крайней мере одним недостатком, варианты (1, 5, 1), (2, 4, 2) и (3, 4, 1) – двумя недостатками, варианты (1, 5, 2), (1, 6, 1) и (3, 4, 2) – тремя. Самым неудачным оказался вариант (1, 6, 2), обладающий четырьмя недостатками.

2.4 UFO-модели с не лучшими значениями по всем критериям

Исходя из сформулированных выше трех критериев, наихудшим вариантом реализации системы, изображенной на рис. 2.1, является вариант (3, 6, 2), показанный на рис. 2.24.

Рисунок 2.24 – Наихудший вариант реализации системы

Улучшим значение третьего критерия. Получим вариант (3, 6, 1).

Рисунок 2.25 – Система с тремя связанными подсистемами и висящей

связью

Теперь рассмотрим вариант (3, 5, 2).

Рисунок 2.26 – Система с тремя несвязанными подсистемами и

висящими связями


Улучшим значение третьего критерия. Получим вариант (3, 5, 1).