Смекни!
smekni.com

Использование качественных методов теории принятия решений в процессе построения UFO-моделей (стр. 7 из 8)

Рисунок 4.1 – Контекстная диаграмма системы телемеханики

Для сравнения различных UFO-моделей системы телемеханики будем пользоваться теми же критериями, которые были рассмотрены в разделе 2:

–количество подсистем (три значения от 1 до 3);

–количество внутренних связей (пять значений от 6 до 10);

–количество висящих связей (три значения от 0 до 2).

Всего 3*5*3 = 45 различных состояний. Разбиваем их на пять классов, центры которых указаны в таблице 4.1.


Таблица 4.1. – Центры классов

Класс Центр класса Вес
1 (1; 1; 1) 3
2 (1,5; 2; 1,5) 5
3 (2; 3; 2) 7
4 (2,5; 4; 2,5) 9
5 (3; 5; 3) 11

Центром первого класса будет UFO-модель, содержащая одну подсистему без висящих связей, которая формально описывается вектором (1; 1; 1) (рис. 4.2).

Рисунок 4.2 – Центр первого класса

К первому классу также отнесем состояние (1; 2; 1), в котором мы «чуть-чуть» ухудшили значение по второму критерию. Состояния (2; 1; 1) и (1; 1; 2) не представляется возможным отнести к первому классу, так как ухудшение по первому и третьему критерию, у которых всего три значения, на одно значение шкалы гораздо более существенно, чем ухудшение на одно значение шкалы по второму критерию, у которого пять значений. Поэтому отнесем состояния (2; 1; 1) и (1; 1; 2) ко второму классу. Все три состояния с весом 4 проклассифицированы.

Ко второму классу отнесем все состояния с весом 5, кроме состояний (3; 1; 1) и (1; 1; 3), которые отнесем к третьему классу. Причина та же – длина шкалы первого и третьего критериев.

Центром третьего класса будет UFO-модель, содержащая две подсистемы с восемью внутренними связями и одной висящей связью, которая формально описывается вектором (2; 3; 2) (рис. 4.3).


Рисунок 4.3 – Центр третьего класса

Все состояния с весами 6, 7 и 8 отнесем к третьему классу. К четвертому классу отнесем все состояния с весом 9, кроме состояний (1; 5; 3) и (3; 5; 1), которые отнесем к третьему классу (по аналогии с состояниями с весом 5).

Центром пятого класса будет UFO-модель, содержащая три подсистемы с десятью внутренними связями и двумя висящими связями, которая формально описывается вектором (3; 5; 3) (рис. 4.4).

Рисунок 4.4 – Центр пятого класса

К пятому классу также отнесем состояние (3; 4; 3), а состояния (2; 5; 3) и (3; 5; 2) – к четвертому (по аналогии с состояниями с весом 4). Построим гистограмму по полученным данным (рис. 4.5).

Рисунок 4.5 – Первый вариант распределения UFO-моделей


Рассуждения логичные, но полученные результаты сильно отличаются от эталонного нормального распределения. Попробуем действовать более прямолинейно (табл. 4.2).

Таблица 4.2 – Диапазон весов классов

Класс Центр класса Диапазон весов
1 (1; 1; 1) 3
2 (1,5; 2; 1,5) 4-5
3 (2; 3; 2) 6-7-8
4 (2,5; 4; 2,5) 9-10
5 (3; 5; 3) 11

Построим гистограмму по полученным данным (рис. 4.6).

Рисунок 4.6 – Второй вариант распределения UFO-моделей

Теперь полученные результаты более соответствуют нормальному распределению.

Попробуем перенести состояние (2, 2, 2) с весом 6 из третьего класса во второй и состояние (2, 4, 2) с весом 8 из третьего класса в четвертый. Построим гистограмму по полученным данным (рис. 4.7).

Рисунок 4.7 – Третий вариант распределения UFO-моделей

Теперь полученные результаты почти идеально соответствуют нормальному распределению.


Выводы

В процессе выполнения магистерской аттестационной работы получены следующие результаты:

– проанализирована проблема автоматизации построения UFO-моделей;

– проанализированы методы решения задачи выбора;

– проанализированы качественные методы принятия решений:

1) ранжирования многокритериальных альтернатив;

2) выбора лучшей многокритериальной альтернативы;

3) порядковой классификации альтернатив;

– проанализированы особенности определения множества критериев;

– разработан подход к определению критериев оценки UFO-модели;

– на основании предложенных критериев исследованы UFO-модели:

1) с двумя лучшими значениями по критериям;

2) с одним лучшим значением по некоторому критерию;

3) с не лучшими значениями по всем критериям;

– осуществлена классификация UFO-моделей в MicrosoftExcel:

1) реализовано описание UFO-моделей в MicrosoftExcel;

2) проведен анализ классов UFO-моделей;

– полученные результаты применены в процессе UFO-моделирования систем телемеханики.

Полученные результаты можно использовать в процессе UFO-анализа.

Среди возможных направлений развития следует отметить перспективность исследования возможности применения вербальных методов принятия решений, не затронутых в данной работе, в процессе UFO-анализа. Также направлением развития может быть внедрение полученных результатов в CASE-инструментарии, используемые в процессе моделирования систем.

Результаты работы апробированы на IV-м Международном научно-практическом форуме «Информационные технологии и кибернетика 2006», который проходил в Днепропетровске 27-28 апреля 2006 г., и опубликованы в сборнике докладов и тезисов этого форума [41].


Перечень ссылок

1. Бондаренко М.Ф., Маторин С.И., Ельчанинов Д.Б. Системная технология моделирования информационных и организационных систем: Учебное пособие. – Харьков: ХНУРЭ, 2005. – 116 с.

2. Бондаренко М.Ф., Соловьева Е.А., Маторин С.И., Ельчанинов Д.Б. Объектная технология моделирования информационных и организационных систем: Учебное пособие. – Харьков: ХНУРЭ, 2005. – 160 с.

3. Бондаренко М.Ф., Соловьева Е.А., Маторин С.И., Ельчанинов Д.Б. Системологическая технология моделирования информационных и организационных систем: Учебное пособие. – Харьков: ХНУРЭ, 2005. – 136 с.

4. Ларичев О.И. Теория и методы принятия решений: Учебник. Изд. 2-е, перераб. и доп. – М.: Логос, 2002. – 392 с.

5. Петровский А.Б. Компьютерная поддержка принятия решений: современное состояние и перспективы развития. / Системные исследования. Методологические проблемы: Ежегодник. – М.: УРСС, 1996. – С. 146-178.

6. Кини Р.Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. – М.: Радио и связь, 1981. – 560 с.

7. Иванилов Е.И. Некоторые аспекты выбора серверов. // Корпоративные системы. − 2003. – №4. – С. 34-36.

8. Кини Р.Л. Размещение энергетических объектов: выбор решений. – М.: Энергоатомиздат, 1983. – 320 с.

9. Рытиков А.М., Ройтман Е.Я., Шафрин Ю.А. Что мешает эффективному внедрению типовых АСУ. // Цветные металлы. − 1988. – №1. – С. 98-101.

10. Ногин В.Д. Принятие решений в многокритериальной среде: количественный подход. – М.: Физматлит, 2002. – 176 с.

11. Подиновский В.В. Количественная важность критериев. // Автоматика и телемеханика. − 2000. – №5. – С. 110-123.

12. Ройзензон Г.В., Фуремс Е.М. Исследования возможностей человека при сравнении трехкритериальных альтернатив. / Труды восьмой национальной конференции по искусственному интеллекту с международным участием (КИИ-2002). – Т. 1. – М.: Физматлит, 2002. – С. 511-518.

13. Ларичев О.И., Зуев Ю.А., Гнеденко Л.С. Метод запрос (замкнутые процедуры у опорных ситуаций) анализа вариантов сложных решений. / Многокритериальный выбор в слабоструктуризованных проблемах. / Под ред. С.В. Емельянова. – М.: ВНИИСИ, 1978. – С. 83-97.

14. Ларичев О.И., Мошкович Е.М. Качественные методы принятия решений. – М.: Физматлит, 1996. – 208 с.

15. Larichev O.I., Moshkovich H.M. ZAPROS-LM: A method and a system for ordering multiattribute alternatives // Europ. J. Operat. Res. – 1995. – Vol. 82. − №3. – P. 503-521.

16. Larichev O.I. Ranking multicriteria alternatives: The method ZAPROS III. // Europ. J. Operat. Res. – 2001. – Vol. 131. − №3. – P. 550-558.

17. Larichev O., Brown R. Numerical and verbal decision analysis used for the problems of resources allocation in Arctic. // J. Multi-Criteria Decision Anal. – 2000. – Vol. 9. − №6. – P. 263-274.

18. Larichev O.I., Kochin D.Yu., Ustinovicius L.L. Multicriteria method for choosing the best object for investments. / DSS in the Uncertainty of the Internet age. – Katowice: The Karol Adamiecki Univ. of Econ., 2003. – P. 255-270.

19. Kochin D., Ustinovicius L. Verbal analysis of the investment risk in construction. // J. Business Econ. and Manag. – 2003. – Vol. 4. − №4. – P. 228-234.

20. Кочин Д., Ларичев О., Устинович Л. Вербальный метод определения эффективности инвестиций в строительстве. // ComputerModell. andNewTechnol. – 2003. – Vol. 7. − №2. – P. 37-47.

21. Ларичев О.И. Наука и искусство принятия решений. – М.: Наука, 1979. – 199 с.

22. Clansey W. Classification problem solving. / Proc. of National Conf. Artificial Intelligence AAAI. – Austin: Univ. of Texas, 1984. – P. 49-55.

23. ЛаричевО.И., МошковичЕ.М. Задачаклассификациивпринятиирешений. // Докл. АН СССР. – 1986. – Т. 287. − №3. – С. 567-570.

24. Выявление экспертных знаний. / О.И. Ларичев, А.И. Мечитов, Е.М. Мошкович, Е.М. Фуремс. – М.: Наука, 1989. – 128 с.

25. Мошкович Е.М. Конструктивный поиск и устранение противоречий в предпочтениях лица, принимающего решения при разбиении многомерных альтернатив на конечное число классов. / Проблемы и процедуры принятия решений при многих критериях. Сборник трудов. №6. / Под ред. С.В. Емельянова, О.И. Ларичева. – М.: ВНИИСИ, 1982. – С. 73-80.

26. Hansel G. Sur le nombre des functions Booleennes monotones de n variables. // C. r. Acad. sci. – 1966. – Vol. 262. − №20. – P. 1088-1090.

27. Ансель Ж. О числе монотонных булевых функций от n переменных. / Кибернетический сборник. №5. Н. с. – М.: Мир, 1968. – С. 53-57.

28. Алексеев В.Б. О расшифровке некоторых классов монотонных многозначных функций. // Журн. вычисл. математики и мат. физики. – 1976. – Т. 16. − №1. – С. 189-198.

29. Соколов Н.А. Об оптимальной расшифровке монотонных функций алгебры логики. // Журн. вычисл. математики и мат. физики. – 1982. – Т. 22. − №2. – С. 449-461.

30. Соколов Н.А. Оптимальная расшифровкя монотонных булевых функций. // Журн. вычисл. математики и мат. физики. – 1987. – Т. 27. − №12. – С. 1878-1887.