Выделение и измерение параметров элементов ЭКГ
Одной из самых важных задач, решаемых программными комплексами ЭКГ диагностики, является определение, измерения и классификация характерных элементов ЭКГ. Обычно характерный вид рассматриваемого элемента ЭКГ хорошо известен. В настоящее время существует множество подходов к выделению и измерению параметров ЭКГ. Перед тем, как перейти к рассмотрению основных методик, рассмотрим подробнее структуру кардиоцикла. На ЭКГ сердечный цикл обычно представляется в виде трех комплексов. Р – комплекс соответствует деполяризации предсердий, QRS – деполяризации желудочков, T – их реполяризации. Реполяризация предсердий на ЭКГ не проявляется. Каждый комплекс состоит из нескольких разнонаправленных пиков (смотреть рис.1.4). Число пиков (зубцов) в каждом комплексе неодинаково в разных отведениях и у разных пациентов. Р и Т комплексы обычно содержат один или два зубца, а QRS – комплекс - от одного до семи. На представленном рисунке введены следующие обозначения:
1 – РР – интервал; 2 – PR – сегмент; 3 – ST – сегмент;
2 – Р – комплекс; 5 – QRS – комплекс; 6 – QT – интервал;
7 – PR – интервал; 8 – RR – интервал; 9 – Т – комплекс
Рис. 1.4. Сердечный цикл и его характерные элементы
Характерные элементы ЭКГ, которые необходимо распознать - это комплексы, сегменты (расстояние между зубцами) и интервалы. К параметрам ЭКГ, подлежащим измерению, относятся высота зубцов и длительность комплексов, а также величина сегментов и интервалов. Таким образом, необходимо выполнять два типа измерений: временные и амплитудные. В настоящее время существует несколько методик распознавания элементов ЭКГ. Одной из групп таких методик является группа структурных методов, основывающихся на априорном знании характеристик определяемого элемента ЭКГ. Обычно алгоритмы, принадлежащие к этой группе, являются эвристическими. Естественно, что характеристики одних и тех же элементов ЭКГ могут меняться от цикла к циклу. Структурные методы пытаются найти такие структурные особенности элемента ЭКГ, которые практически не изменяются от цикла к циклу, применяя для этого специальным образом подобранные фильтры, пороговые детекторы. Дополнительно также производится анализ длительностей комплексов, процедура фильтрации ложных пиков и т.д. Фактически основной работой, положившей начало этой группе алгоритмов, была [16], от которой в настоящее время получено множество производных методик, адаптированных для определения различных элементов ЭКГ. К другой группе методик принадлежат алгоритмы, основывающиеся на принципе сравнения искомого элемента ЭКГ с неким полученным специальным образом шаблоном. Такой шаблон обычно получается путем усреднения выровненных элементов, определенных ручным способом. Далее, исходя из доверительной вероятности определения, определяется максимальное среднеквадратичное отклонение, при котором классифицируемый элемент все еще принадлежит к группе шаблона. Фактически осуществляется потоковый просмотр исходного сигнала при использовании определенного окна и, если выделенный сегмент не выходит за границы максимального СКО, то он считается распознанным как элемент, принадлежащий группе шаблона. Самым важным моментом является выбор максимально допустимого СКО от оригинала, так как слишком большое СКО приведет к неверному принятию некорректных комплексов, а слишком малое - к потере реальных.
И, наконец, третьей группой методик анализа являются синтаксические алгоритмы, также известные как лингвистические или грамматические). Исходный анализируемый сигнал разлагается в определенную последовательность примитивов, определяются специальные правила (грамматики), порождающие то или иной элемент ЭКГ из множества примитивов. Для определения и классификации комплексов применяются конечные автоматы, распознающие наличие той или иной грамматики в ЭКГ.
В заключении следует отметь, что обычно все вышеописанные методики применяются в комплексе, что значительно более эффективно, чем использовать только один конкретный метод в отдельности.
Интерпретация и классификация ЭКГ
Результаты выявления элементов ЭКГ и измерения их параметров используются для интерпретации с целью постановки правильного диагноза. В настоящее время известны две основные категории алгоритмов, применяемых в различных системах автоматической диагностики. К первой категории относятся алгоритмы, моделирующие логику врача-диагноста — детерминистический. Естественно, в них используются признаки заболеваний, диагностическая значимость которых установлена всем предшествующим опытом медицины. Применительно к задачам электрокардиографии это связано, в частности, с обязательным использованием параметров медицинского описания электрокардиограммы. Данные тестируют по установленным критериям и получают набор непротиворечивых заключений по ЭКГ. Стоит заметить, что сегодня универсальный комплекс таких критериев отсутствует. Алгоритмы второй категории, как правило, основаны на методах многомерного статистического анализа и теории вероятностей. При этом отказываются не только от медицинской логики, но и от принятых в медицине обозначений элементов электрокардиограммы и способов измерений.
Обе названные категории алгоритмов имеют свои достоинства и недостатки. Безусловное достоинство медицинских алгоритмов - в возможности их быстрой реализации. Это определяется тем, что они концентрируют опыт диагностики, накопленный в медицине, и не требуют предварительных обучающих выборок. Предел диагностических возможностей таких алгоритмов ограничивается современным уровнем развития медицины, а качество конкретных алгоритмов компетентностью лиц, их составляющих.
Достоинством немедицинских диагностических алгоритмов является то, что они могут использовать любые параметры описания электрокардиограммы. Благодаря этому им оказываются доступны резервы информации, которые в клинической практике остаются неиспользованными. Недостатком этих алгоритмов является неудобность их обучения. Это представляет существенные трудности, так как связано с подбором хорошо исследованных больных с заболеваниями, различать которые должен научиться автомат. Тем не менее, алгоритмы второй категории считаются более перспективными, так доступная им новая информация даст возможность сделать диагностику более эффективной. В настоящее время ведутся активные работы в разных странах мира в области разработки алгоритмов классификации ЭКГ. Основными направлениями работ является применение нейронных сетей, методов частотно-временного преобразования (вейвлет-анализ) и многое другое.
Сжатие ЭКГ данных
Большинство современных программных ЭКГ системы обладают возможностью сжатия данных. Такая возможность необходима для организации эффективного хранения данных, передачи больших объемов данных через Internet. Некоторые методы сжатия даже включены в стандарты обмена ЭКГ данными [18].
В целом, компрессия данных осуществляется за счет уменьшения избыточности ЭКГ. Все основные методы сжатия данных могут разделены на 2 группы: сжатие с потерями данных и без потерь. Под сжатием с потерями подразумевается то, что исходный сигнал может быть восстановлен только с заведомо известной степенью точности. Методы сжатия с потерями используют стандартные методы кодирования избыточности, применяемые для сжатия произвольных данных. Эти методики обычно используют особенности ЭКГ сигнала: периодичность, наличие участков практически постоянного потенциала. Чтобы извлечь из этого пользу, сигнал зачастую дифференцируется, генерируется усредненный шаблон периодического участка(обычно QRS комплекс), который вычитается из сигнала на каждом периоде. Все это делается для того, чтобы впоследствии как можно эффективнее применить операцию кодирования без потери информации. Сжатие с потерями обычно происходит по стандартной схеме. Вначале используется некоторое дискретное преобразование сигнала, полученные коэффициенты дополнительно квантуются и далее применятся стандартная процедура сжатия квантованных коэффициентов без потерь. В настоящее время в качестве дискретных преобразований широко применяются дискретное преобразование Фурье (ДПФ), дискретное косинусное преобразование, преобразование Карунена-Леве, а также вейвлет-преобразование. [19]. Следует заметить, что единственный шаг кодирования, на котором осуществляется потеря данных, - это процедура квантования.
Эффективность компрессии определяется коэффициентом сжатия, который обычно тем больше, чем выше величина потерь данных, и чем больше время, затраченное на кодирование информации. Величину, характеризующую потерю данных, обычно выражают в терминах среднеквадратичного отклонения, представленного в процентах:
Итак, в этой главе был проведен обзор функциональных возможностей систем сбора и математической обработки ЭКГ информации и основных методик ЭКГ, применяемых в настоящее время в клинической практике. Все методики ЭКГ – анализа, за исключением этапа интерпретации и классификации ЭКГ, описанные в этом разделе так или иначе используются при построении программы, предлагаемой на рассмотрение.
Перейдем теперь к рассмотрению основных принципов построения и использования предлагаемой нами программы тестирования и оптимизации программных фильтров для определения моменты подачи импульса в дефибрилляторе ДФР-2.