Смекни!
smekni.com

История развития ЭВМ (стр. 4 из 8)

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

На современном этапе

компьютер устройство дистанционный история

Потребность в более быстрых, дешевых и универсальных процессорах вынуждает производителей постоянно наращивать число транзисторов в них. Однако этот процесс не бесконечен. Поддерживать экспоненциальный рост этого числа, предсказанный Гордоном Муром в 1973 году, становится все труднее. Специалисты утверждают, что этот закон перестанет действовать, как только затворы транзисторов, регулирующие потоки информации в чипе, станут соизмеримыми с длиной волны электрона (в кремнии, на котором сейчас строится производство, это порядка 10 нанометров). И произойдет это где-то между 2010 и 2020 годами. По мере приближения к физическому пределу архитектура компьютеров становится все более изощренной, возрастает стоимость проектирования, изготовления и тестирования чипов. Таким образом, этап эволюционного развития рано или позно сменится революционными изменениями.

В результате гонки наращивания производительности возникает множество проблем. Наиболее острая из них - перегрев в сверхплотной упаковке, вызванный существенно меньшей площадью теплоотдачи. Концентрация энергии в современных микропроцессорах чрезвычайно высока. Нынешние стратегии рассеяния образующегося тепла, такие как снижение питающего напряжения или избирательная активация только нужных частей в микроцепях малоэффективны, если не применять активного охлаждения.

С уменьшением размеров транзисторов стали тоньше и изолирующие слои, а значит, снизилась и их надежность, поскольку электроны могут проникать через тонкие изоляторы (туннельный эффект). Данную проблему можно решить снижением управляющего напряжения, но лишь до определенных пределов.

На сегодняшний день основное условие повышения производительности процессоров - методы параллелизма. Как известно, микропроцессор обрабатывает последовательность инструкций (команд), составляющих ту или иную программу. Если организовать параллельное (то есть одновременное) выполнение инструкций, общая производительность существенно вырастет. Решается проблема параллелизма методами конвейеризации вычислений, применением суперскалярной архитектуры и предсказанием ветвлений. Многоядерная архитектура. Эта архитектура подразумевает интегрирование нескольких простых микропроцессорных ядер на одном чипе. Каждое ядро выполняет свой поток инструкций. Каждое микропроцессорное ядро значительно проще, чем ядро многопотокового процессора, что упрощает проектирование и тестирование чипа. Но между тем усугубляется проблема доступа к памяти, необходима замена компиляторов.

Многопотоковый процессор. Данные процессоры по архитектуре напоминают трассирующие: весь чип делится на процессорные элементы, напоминающие суперскалярный микропроцессор. В отличие от трассирующего процессора, здесь каждый элемент обрабатывает инструкции различных потоков в течение одного такта, чем достигается параллелизм на уровне потоков. Разумеется, каждый поток имеет свой программный счетчик и набор регистров.

"Плиточная" архитектура. Сторонники считают, что ПО должно компилироваться прямо в "железе", так как это даст максимальный параллелизм. Такой подход требует достаточно сложных компиляторов, которые пока еще не созданы. Процессор в данном случае состоит из множества "плиток" (tiles), каждая из которых имеет собственное ОЗУ и связана с другими "плитками" в своеобразную решетку, узлы которой можно включать и отключать. Очередность выполнения инструкций задается ПО.

Многоетажная архитектура. Здесь речь идет не о логической, а о физической структуре. Идея состоит в том, что чипы должны содержать вертикальные "штабеля" микроцепей, изготовленных по технологии тонкопленочных транзисторов, заимствованной из производства TFT-дисплеев. При этом относительно длинные горизонтальные межсоединения превращаются в короткие вертикальные, что снижает задержку сигнала и увеличивает производительность процессора. Идея "трехмерных" чипов уже реализована в виде работающих образцов восьмиэтажных микросхем памяти. Вполне возможно, что она приемлема и для микропроцессоров, и в недалеком будущем все микрочипы будут наращиваться не только горизонтально, но и вертикально.

Краткая история компьютерной техники

1623г. Первая "считающая машина", созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами.

1644г. "Вычислитель" Блеза Паскаля - первая по настоящему популярная считающая машина, производившая арифметические действия над 5-значными числами.

1668г. Вычислитель сера Сэмюэля Морланда, предназначавшийся для финансовых операций.

1674г. Вильгельм Годфрид фон Лейбниц сконструировал механическую счётную

машину, которая умела производить не только операции сложения и вычитания, но и умножения!

1820г. Первый калькулятор - "Арифмометр" Шарля де Кольмара. Продержалось на рынке (с некоторыми усовершенствованиями) целых 90 лет!

1834г. Знаменитая "Аналитическая машина" Чарльза Бэббиджа - первый программируемый компьютер, использовавший примитивные программы на перфокартах.

1871г. Бэббидж создал прототип аналитического устройства компьютера и печатающее устройство - принтер.

1886г. Дорр Фелт создал Comptometer - первое устройство с клавишным вводом данных.

1890г. В США произведена перепись населения - впервые в этом участвовала "считающая машина", созданная Германом Холлритом.

1935г. Корпорация IBM (International Business Machines) начала выпуск массовых вычислителей IBM-601.

1937г. Математик Алан Тюринг создал "математическую модель" компьютера, получившую название "Машина Тюринга".

1938г. Кондрад Цузе, друг и коллега знаменитого Вернера фон Брауна, создал в Берлине один из первых компьютеров - V1.

1943г. Говард Эйкен создает "ASCC Mark I" - машину, считающуюся дедушкой современных компьютеров. Её вес составлял более 7 тонн и состоял из 750 000 частей. Машина применялась в военных целях - для расчёта артиллерийских таблиц.

1945г. Джон фон Нейман разработал теоретическую модель устройства компьютера - первое в мире описание компьютера, использовавшего загружаемые извне программы. В этом же году Мочли и Эккерт создали ENIAC - самый грандиозный и мощный ламповый компьютер той эпохи. Компьютер весит более 70 тон и содержит в себе почти 18 тысяч электронных ламп. Рабочая частота компьютера не превышает 100КГц (несколько сот операций в секунду).

1956г. В Массачусетском технологическом институте создан первый компьютер на транзисторной основе. В этом же году IBM создала первый накопитель информации - прототип винчестера - жёсткий диск КАМАС 305.

1958-1959г.Д. Килби и Р. Нойс создали уникальную цепь логических элементов на

поверхности кремниевого кристалла, соединённого алюминиевыми контактами -

первый прототип микропроцессора, интегральную микросхему.

1960г. АТ разработали первый модем.

1963г. Дуглас Энгельбарт получил патент на изобретённый им манипулятор - "мышь".

1968г. Основание фирмы Intel Робертом Нойсем и Гордоном Мурем.

1969г. Intel представляет первую микросхему оперативной памяти объёмом 1 Кб. В этом же году фирма Xerox создаёт технологию лазерного копирования изображений, которая через много лет ляжет в основу технологии печати лазерных принтеров. Первые "ксероксы".