Смекни!
smekni.com

Перспективные интерфейсы оперативной памяти (стр. 4 из 5)

Поскольку DRCG является задающим устройством согласования внешних и внутренних цепей Rambus DRAM, рассмотрим детально схему синхронизации всей подсистемы. Входной сигнал REFCLK подается на преобразователь В, находящийся во входном каскаде ФАПЧ. Делитель А, находящийся в цепи обратной связи ФАПЧ, генерирует промежуточную частотуPLLClk=RefClk*(A/B), где RefClk=PClk*4N/(M*X). Важен также параметрY=4N/(M*X)=RefClk/PClk, характеризующий степень зависимости опорной частоты (RefClk) от частоты синхронизации с внешней системой (PClk). Выводы MULT[1:0], подающие сигнал на вход делителя А, задают коэффициент умножения ФАПЧ:X=A/B.

Частоты PClk и SynClk различаются, однако передаточная логика, входящая в состав контроллера RMC, должна выбрать подходящий делитель M или N таким образом, чтобы выполнялось обязательное условие эквивалентности: PClk/M=SynClk/N. Например, рассмотрим стандартный случай, когда CTM=400 MГц, PClk=133MHz и SynClk=100MHz: получим коэффициенты M=4, N=3 и имеем частотную зависимость PClk/M=SynClk/N=33 МГц. Параметр f@PD характеризует частоту на фазовом детекторе относительно действующей частоты (PClk/SynClk) на делителе (M/N). Фактически, f@PD=PClk/M=SynClk/N.

Блок приложений (Application Unit), входящий в состав RMC.d1, управляет сигналами по линиям M2m1[2:0] (шина соединения блока приложений и блока механизмов, являющаяся входной линией передаточной логики, и определяющая степень значимости коэффициента M), N2m1[2:0] (шина соединения блока приложений и блока механизмов, являющаяся входной линией передаточной логики, и определяющая степень значимости коэффициента N) и MULT[1:0] (шина передачи от блока приложений к DRCG, использующая параметр Х, определяющий степень отношения между PClk и RefClk), передавая их в передаточную логику и компоненты DRCG. Сами входы напрямую связанычастотными отношениями между PClk, SynClk (SClk) и CTM/CTMN (CTMN выступает как негативный "двойник" CTM — особенность дифференциального протокола) через коэффициенты M и N следующими зависимостями: M2m1=(M/2)-1 и N2m1=(N/2)-1.

1.5 FB DIMM (Fully Buffered DIMM)

Необходимость в изменении технологии серверной памяти возникла вот в связи с чем. Чем дальше, тем выше частоты модулей, используемых в серверах. Но с ростом их частоты возникает большое число проблем, связанных с такими физическими эффектами, как всевозможные наводки и перекрестные помехи. Чем выше частота работы памяти, тем сложнее с ними бороться. И в результате имеем следующую ситуацию: чем выше частота работы памяти, тем выше электрическая нагрузка на контроллер памяти, и тем меньше модулей у нас может работать одновременно. Поскольку для серверов большой объем поддерживаемой памяти есть одно из ключевых требований, необходимо как-то выкарабкиваться из этого тупика. Одним из вариантов такого выхода является технология FB DIMM.


Рисунок 1.2 – модули памяти FBDIMM

Суть FB DIMM вполне описывается словом «сериализация». А сама идеология находится вполне в современном духе перехода к последовательным шинам везде, где только можно. В частности, оказалось, что можно и в технологиях, связанных с памятью.

Идея FB DIMM состоит в том, что от общей шины памяти, на которой сидят модули памяти, мы уходим. Поэтому избыточная электрическая нагрузка, которую модули создают на контроллер, перестает быть проблемой. Вместо этого есть две шины (одна на чтение, другая – на запись) на которых сидят не сами массивы ячеек, а только управляющие буферы модуля (AMB в терминологии FB DIMM). Таким образом, питание массивов ячеек контроллером памяти более не осуществляется. Массивы ячеек основаны на технологии DDR2, здесь FB DIMM вполне пересекается с текущими технологиями. Благодаря этому, производителям памяти будет проще перейти на технологию FB DIMM.

Кроме того, все передачи контроллер памяти ведет только в буферы AMB, все данные получает оттуда же.

Все это происходит, повторюсь, по узким высокочастотным шинам. Поскольку технология ECC является присущей абсолютно всем пересылкам данных между AMB и контроллером, появляются дополнительные преимущества типа защиты команд ЕСС кодом. В этом плане FB DIMM меньше подвержены ошибкам, поскольку содержат более развитые технологии контроля ошибок и восстановления данных.

Кроме того, поскольку модуль FB DIMM фактически связан с контроллером только буфером AMB, для такой памяти гораздо проще достигнуть пропускной способности, максимально близкой к теоретической. Например, если у нас в наличии два модуля FB DIMM, мы вполне можем одновременно писать в один и читать из другого.

Кроме всего прочего, использование буфера AMB позволяет полностью скрывать от контроллера такую служебную операцию, как восстановление содержимого ячейки, refresh. Можно скрывать и некоторые другие операции. Более того, команды в модуле FB DIMM конвейеризированы, и можно отдавать следующую команду на фоне выполнения предыдущей.

К достоинствам отнесем и заметно меньшее число контактов, которые нужно разводить: в частности, в презентации от Intel (см. ссылку ниже) приводят пример 69 контактов у FB DIMM модуля против 240 у модуля DDR2. Поэтому вместо двух каналов DDR2 вполне можно разводить четыре канала, и при этом у них разводка будет занимать меньшее число контактов (276 против 480), и к ней предъявляются менее жесткие требования. Ну а результат сравнения пропускной способности двух конкурирующих типов вполне предсказуем: два канала DD2-400 имеют теоретический максимум 6.4GB/sec, а четыре канала FB DIMM способны выдать порядка 17GB/sec.

память голографический молекулярный графеновый


2. Перспективы развития оперативной памяти

2.1 MRAM

MRAM(Magneto-Resistive RAM — «Магниторезистивная RAM» или «Магниторезистивное ОЗУ») — однокристальная полупроводниковаяоперативная память, при производстве которой используются магнитный материал (часто применяемый в магнитных считывающих головках) и переход с магнитным туннелированием — MTJ (Magnetic Tunnel Junction). В основу современной конструкции MRAM положена концепция, разработанная немецким физиком Андреасом Нейем (Andreas Ney) и его коллегами из Института твердотельной электроники им. Пауля Друде, которая была опубликована в октябрьском номере 2003 журнала Nature. Авторы предложили использовать так называемые «программируемые логические элементы» на основе MRAM-памяти. Вычислительное устройство состоит из логических элементов «и», «или», «и-не» и «или-не». Устройство памяти состоит из элементов, у каждого из которых есть два независимых входа и возможны четыре начальные состояния. Элемент MRAM-памяти содержит два разделенных промежутком магнитных слоя. Если магнитные моменты обоих слоев параллельны, электрическое сопротивление всего элемента небольшое, это отвечает состоянию «1». Если антипараллельны — сопротивление велико и это соответствует состоянию «0». Направления магнитных моментов можно менять на противоположные, пропуская электрический ток по каждой из линий. Независимость входов для каждого из магнитных слоев дает возможность иметь четыре начальных состояния: «00», «01», «10» и «11», гдe «00» отвечает состоянию с отрицательной величиной тока через оба магнитных слоя, а «01» — отрицательному току через слой А и положительному через слой В и т.д. Этим можно осуществлять логические операции «и» и «или». Если добавить еще один вход по току, то появится возможность выполнения логических операций «и-не» и «или-не».

Производительность MRAM зависит от структуры и состава MTJ. Исследования, проведенные Renesas Technology Corp. совместно с Mitsubishi Electric, заключались в изучении зависимости величины магниторезистивного соотношения от резистивной поверхности перехода. Продемонстрированные в 2004 прототипы MRAM имеют микроархитектуру 1T-1MTJ (1 транзистор и 1 переход на ячейку памяти); размер магниторезистивного туннеля одного элемента — TMRE (Tunnel Magneto-Resistance Element) тогда составлял 0,26x0,44 µм²; размер ячейки памяти — 0,81 µм².

В 2003 японская компанияNECпредставила на конференции IEEE в Сан-Франциско экспериментальную микросхему MRAM, изготовленной по 0,25-мкм КМОП-технологии и 0,6-мкм технологии MRAM. Структура ячейки памяти включала числовую шину (word line), разрядную шину (bit line) и магнитный туннельный переход (MTJ). Благодаря особой конструкции массива ячеек памяти инженерам NEC удалось добиться заметного снижения паразитных шумов, что привело к улучшению соотношения сигнал/шум во время операции чтения данных и одновременно позволило уменьшить размеры чипа на 20%.

В 2004 компания Renesas Technology продемонстрировала прототип чипа 1 Мбит MRAM, выполненного с использованием 0,13-мкм CMOS технологического процесса. Его характеристики: тактовая частота — 143 МГц при напряжении питания 1,2 В; кол-во циклов перезаписи — свыше 1 трлн (при Т = 150°С без ухудшения характеристик); время чтения данных из ячейки — 5,2 нс.

В последние годы компании Toshiba и NEC разрабатывают MRAM совместно. Согласно опубликованным в феврале 2006 данным, им удалось создать новое изделие, в котором объединены максимальная плотность и наилучшие скоростные показатели операций чтения и записи, достигнутые для MRAM на данный момент. Ее характеристики: объем памяти — 16 Мбит; скорость чтения и записи — 200 Мбит/с (время цикла — 34 нс); напряжение питания — 1,8 В, что делает ее пригодной для мобильных устройств с батарейным питанием. Основная трудность, с которой столкнулись разработчики, была связана с повышением скорости чтения. Цепь, генерирующая магнитное поле для записи, замедляла операцию чтения из ячейки памяти. Решение было найдено в разделении цепей чтения и записи. Помимо увеличения скорости работы, такой прием позволил снизить эквивалентное сопротивление на 38% за счет "разветвления" тока записи.

В июле 2006 компания Freescale Semicondactor (до 2004 была подразделением корпорации Motorola) представила первые промышленные образцы 4 Мбитных чипов MRAM — MR2A16A, обогнав таких гигантов ИТ-индустрии, как HP и IBM, которые планировали начать их выпуск еще в 2004. Начато их промышленное производство на фабрике в Аризоне. Себестоимость производства (~$25) пока еще очень велика, что, тем не менее, считается быстро преодолимым.