• Тест Спилбергера-Ханина — методика оценки личностной тревожности
и реактивной тревоги.
• ЧВ — методика оценки чувства времени.
• ПДР - методика оценки времени простой двигательной реакции.
• РДО - методика оценки реакции на движущийся объект.
• Метод цветовых выборов.
А также:
Определение нарушений функций мышления.
·Определение нарушений функций внимания.
·Определение нарушений функций памяти.
·Диагностика мотивационной сферы:
1. Определение ценностных ориентаций
2. Мотивация избегания неуспеха – мотивация достижения
3. Диагностика направленности личности
·Диагностика эмоционально-личностных качеств.
·Диагностика коммуникативных навыков и особенностей межличностного взаимодействия:
1. Склонность к конфликтному и агрессивному поведению
2. Уровень субъективного контроля
3. Диагностика стиля взаимодействия
·Диагностика профессиональной направленности и компетентности:
1. Профориентационные методики
2. Система «человек-человек»
3. Система «человек-техника»
4. Система «человек-знаковая система»
5. Система «человек-природа»
6. Творческий потенциал
1.3.3.2. Функциональная диагностика
·Электроэнцефалография
·Стабилография
·Электрокардиография
·Функциональные пробы
1.4 Проблемы предоставления нормы в АСПО
Основной целью автоматизированной системы предрейсовых осмотров является статистическое наблюдение распределение значений гемодинамики по частоте их измерения с предположением, что данное распределение, не зависимо от числа измерений, – нормально. Обсуждение проблемной части подобного подхода можно начинать, предварительно ознакомившись с целями и задачами АСПО.
АСПО на транспорте решает три задачи:
Первая - запретительная.По утвержденным критериям и их численным значениям осуществлять отстранение работников, не подготовленных к рейсу.
Вторая - предупредительная. С помощью мониторинга контроль этих же показателей и других критериев для осуществления активного вызова и выполнения лечебных и реабилитационных мероприятий.
Третья - исследовательская. Определение эффективно работающих критериев и их численных значений для решения задачи обеспечения безопасности движения поездов и других транспортных средств.
Также к основным задачам можно отнести:
- внедрение современных автоматизированных медицинских технологий для повышения качества и эффективности проведения предрейсовых медицинских осмотров локомотивных бригад;
- своевременное выявление лиц с нарушениями функционального состояния, явлениями острых и обострением хронических заболеваний;
- мониторинг состояния здоровья и функционального статуса работников локомотивных бригад на основе автоматизированной обработки и анализа результатов предрейсовых медицинских осмотров, в том числе с учетом данных углубленных осмотров;
- организационно-методическое обеспечение взаимодействия фельдшеров ПРМО, цеховых терапевтов, психологов (психофизиологов) локомотивных депо и других специалистов по вопросам медицинского и психофизиологического обеспечения локомотивных бригад;
- разработка индивидуальных критериев и пороговых значений физиологических показателей, оценка состояния здоровья различных возрастных групп работников локомотивных бригад, а также лиц, выполняющих иные виды движения;
- выделение групп повышенного риска по развитию психосоматических заболеваний, в том числе с симптомами недосыпания, переутомления, стрессовых, депрессивных и других нарушений функционального состояния:
- объективизация данных предрейсовых осмотров, автоматическая обработка и их систематизация, контроль качества и эффективности проводимых профилактических мероприятий;
-информационное сопряжение АСПО с ЛСУТ с разграничением прав доступа;
- интеграция результатов НИОКР: - «Автоматизированные методы оценки, в том числе дистантные и прогнозирование состояния здоровья и работоспособности работников локомотивных бригад на основе численных критериев функционального состояния в процессе предрейсового контроля» и «Обеспечение информационной безопасности в автоматизированных системах предрейсового осмотра и медико-психологического обеспечения работников локомотивных бригад» в программно-техническое обеспечение АСПО.
Не смотря на существенный перечень задач АСПО цеховыми терапевтами отмечается следующая закономерность: при малом числе измерений интервал нормы более объективен к рискованным отклонениям состояния здоровья членов исследуемой популяции. При большем числе измерений объективность скрывается интервалом нормы и отдельные краевые случаи состояния риска не каким образом не отражаются системой. Это сокрытие происходит за счет свойств нормального закона, который следуя закону больших чисел по вероятности с увеличением измерений будет приближать вычисляемую норму к «идеальной», скрывая факторы риска и прогрессирующие патологии. Для исправления подобных издержек информационной обработки сигналов АСПО поставлена цель и определены задачи настоящего проекта.
2. АДАПТИВНАЯ НАСТРОЙКА СТАТИСТИЧЕСКОГО РАЗДЕЛЕНИЯ ПРИЗНАКОВ В СИСТЕМЕ НЕЙРО-НЕЧЕТКОГО ВЫВОДА
2.1 Основы принципа нечеткого вывода и идентификации
2.1.1 Нечеткая логика, лингвистическая оценка медицинских параметров
Нечеткая логика это обобщение традиционной аристотелевой логики на случай, когда истинность рассматривается как лингвистическая переменная, принимающая значения типа: "очень истинно", "более-менее истинно", "не очень ложно" и т.п. Указанные лингвистические значения представляются нечеткими множествами. Лингвистической переменной называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка.
2.1.2 Направления исследований нечеткой логики по отношению к медицинским диагностическим заключениям
В настоящее время существует по крайней мере два основных направления научных исследований в области нечеткой логики:
·Нечеткая логика в широком смысле (Теория приближенных вычислений)
·Нечеткая логика в узком смысле (Символическая нечеткая логика)
2.1.2.1 Символическая нечеткая логика и терминология предметной области
Символическая нечеткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие. Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя. Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы). Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечеткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний). Существуют три основных базисных нечетких логики: логика Лукасевича, логика Гёделя и вероятностная логика (Product logic). Интересно, что объединение любых двух из трех перечисленных выше логик приводит к классической булевозначной логике.
2.1.2.2 Теория приближенных вычислений и стохастические измерения
Основное понятие нечеткой логики в широком смысле — нечеткое множество, определяемое при помощи обобщенного понятия характеристической функции. Затем вводятся понятия объединения, пересечения и дополнения множеств (через характеристическую функцию; задать можно различными способами), понятие нечеткого отношения, а также одно из важнейших понятий — понятие лингвистической переменной. Вообще говоря, даже такой минимальный набор определений позволяет использовать нечеткую логику в некоторых приложениях, для большинства же необходимо задать ещё и правило вывода (и оператор импликации).
2.1.3 Идентификация с помощью иерархической системы нечеткого логического вывода
Для моделирования многомерных зависимостей "входы - выход" целесообразно использовать иерархические системы нечеткого логического вывода. В этих системах выходная переменная одной базы знаний является входной для другой базы знаний. На рис. 2.1 приведен пример иерархической нечеткой базы знаний, моделирующей зависимостьвы
с использованием трех баз знаний. Эти базы знаний описывают такие зависимости: , и .Рисунок 2.1 - Пример иерархической нечеткой базы знаний
Применение иерархических нечетких баз знаний позволяет преодолеть "проклятие размерности". При большом количестве входов эксперту трудно описать причинно-следственные связи в виде нечетких правил. Это обусловлено тем, что в оперативной памяти человека может одновременно хранится не более 7±2 понятий-признаков. Следовательно, количество входных переменных в одной базе знаний не должно превышать это магическое число. Более поздние исследования показали, что хорошие базы знаний получаются, когда количество входов не превышает пяти шести. Поэтому, при большем количестве входных переменных необходимо их иерархически классифицировать с учетом приведенных выше рекомендаций. Обычно, выполнение такой классификации не составляет трудностей для эксперта, так как при принятии решений человек иерархически учитывает влияющие факторы.