Правило 5–4–3 можно интерпретировать в этом случае следующим образом:
· каскадно могут объединяться не более чем 4 концентратора;
· «дерево» каскадируемых концентраторов должно быть построено таким образом, чтобы между двумя любыми станциями в сети было не более чем 4 концентратора;
В смешанных сетях могут быть исключения из этого правила – например, если один из хабов поддерживает не только витую пару, но и оптоволоконный кабель, то допустимое число каскадируемых концентраторов увеличивается до 5.
Среда передачи данных стандарта 10Base-F – оптоволокно. В стандарте повторяется топология и функциональные элементы 10Base-T: концентратор, к портам которого с помощью кабеля подключаются сетевые адаптеры станций. Для соединения адаптера с повторителем используется два оптоволокна – одно на прием, второе на передачу.
Существует несколько разновидностей 10Base-F. Первым стандартом для использования оптоволокна в сетях Ethernet был FOIRL (Fiber Optic Inter-Repeater Link). Ограничение длины оптоволоконных линий между повторителями 1 км при общей длине сети не более 2,5 км. Максимальное число повторителей – 4.
В стандарте 10Base-FL, предназначенном для соединения станций с концентратором, длина сегмента оптоволокна до 2 км при общей длине сети не более 2,5 км. Максимальное число повторителей также 4. Ограничения длин кабелей даны для многомодового кабеля. Применение одномодового кабеля позволяет прокладывать сегменты длиной до 20 км.
Существует также стандарт 10Base-FB, предназначенный для магистрального соединения повторителей. Ограничение на длину сегмента – 2 км при общей длине сети 2,74 км. Количество повторителей – до 5. Характерной особенностью 10Base-FB является способность повторителей обнаруживать отказы основных портов и переходить на резервные за счет обмена специальными сигналами, которые отличаются от сигналов передачи данных. [20]
Стандарты 10Base-FL и 10Base-FB не совместимы между собой. Дешевизна оборудования 10Base-FL позволила ему обогнать по распространенности волоконно-оптические сети других стандартов.
Оконцовка оптоволоконных кабелей представляет собой существенно более сложную задачу, чем оконцовка медных кабелей. Необходимо точное совмещение осей светопроводящего материала – волокон и коннекторов. Типы коннекторов в основном отличаются друг от друга размером и формой направляющего ободка. Если в самых первых биконических коннекторах использовались конические ободки, то в настоящее время используются коннекторы типа SC (square cross-section), имеющие ободок квадратного сечения. Для надежного закрепления коннектора в гнезде в ранних типах коннекторов использовалась байонетная (ST) или резьбовая (SMA) фиксация. Сейчас в коннекторах SC используется технология «push-pull», предусматривающая закрепление коннектора в гнезде защелкиванием. Коннекторы типа SC применяются не только в локальных сетях, но также и в телекоммуникационных системах и в сетях кабельного телевидения.
Отдельная проблема – соединение оптических волокон. Надежное и долговечное соединение достигается сваркой волокон, что требует специального оборудования и навыков.
Область применения оптоволокна в сетях Ethernet – это магистральные каналы, соединения между зданиями, а также те случаи, когда применение медных кабелей невозможно из-за больших расстояний или сильных электромагнитных помех на участке прокладки кабеля. На сегодняшний день стандарт 10Base-F вытесняется более скоростными стандартами Ethernet на оптоволоконном кабеле. [13]
В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая обобщила бы достижения отдельных компаний в области Ethernet-преемственного высокоскоростного стандарта. Новая технология получила название Fast Ethernet.
Одновременно были начаты работы в институте IEEE по стандартизации новой технологии – там была сформирована исследовательская группа для изучения технического потенциала высокоскоростных технологий. За период с конца 1992 года и по конец 1993 года группа IEEE изучила 100-Мегабитные решения, предложенные различными производителями. Наряду с предложениями Fast Ethernet Alliance группа рассмотрела также и другую высокоскоростную технологию, предложенную компаниями Hewlett-Packard и AT&T. [15]
В центре дискуссий была проблема сохранения соревновательного метода доступа CSMA/CD. Предложение по Fast Ethernet сохраняло этот метод и тем самым обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T. Коалиция HP и AT&T, которая имела поддержку гораздо меньшего числа производителей в сетевой индустрии, чем Fast Ethernet Alliance, предложила совершенно новый метод доступа, называемый Demand Priority. Он существенно менял картину поведения узлов в сети, поэтому не смог вписаться в технологию Ethernet и стандарт 802.3, и для его стандартизации был организован новый комитет IEEE 802.12.
В мае 1995 года комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30.
Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном. [20]
Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.
Сети Token Ring работают с двумя битовыми скоростями – 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.
Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.
Ethernet использует «случайный» метод доступа к сети (CSMA/CD – carrier-sense multiple access/collision detection) – множественный доступ с обнаружением несущей. В нем отсутствует последовательность, в соответствии с которой станции могут получать доступ к среде для осуществления передачи. В этом смысле доступ к среде осуществляется случайным образом. Преимущество метода: алгоритмы случайного доступа реализуются значительно проще по сравнению с алгоритмами детерминированного доступа. Следовательно, аппаратные средства могут быть дешевле. Поэтому Ethernet более распространен по сравнению с другими технологиями для локальных сетей. При загрузке сети уже на уровне 30% становятся ощутимыми задержки при работе станций с сетевыми ресурсами, а дальнейшее увеличение нагрузки вызывает сообщения о недоступности сетевых ресурсов. Причиной этого являются коллизии, возникающие между станциями, начавшими передачу одновременно или почти одновременно. При возникновении коллизии, передаваемые данные не доходят до получателей, а передающим станциям приходится возобновлять передачу. В классическом Ethernet все станции в сети образовывали домен коллизий (collision domain). При этом одновременная передача любой пары станций приводила к возникновению коллизии.
В сетях с маркерным методом доступа право на доступ к среде передается циклически от станции к станции по логическому кольцу. Кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения – маркер (токен).
Получив маркер, станция анализирует его, при необходимости модифицирует и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой.
При поступлении кадра данных к одной или нескольким станциям, эти станции копируют для себя этот кадр и вставляют в этот кадр подтверждение приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и выдает новый маркер для обеспечения возможности другим станциям сети передавать данные.
Время удержания одной станцией маркера ограничивается тайм-аутом удержания маркера, после истечение которого станция обязана передать маркер далее по кольцу.
В сетях Token Ring 16 Мб/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80% от номинальной.
Для различных видов сообщений передаваемым данным могут назначаться различные приоритеты.