В таблице 1.1 первые m строк определяются исходными данными задачи, а показатели (m+1)-ой строки вычисляют. В этой строке в столбце вектора P0 записывается значение целевой функции, которое она принимает при данном опорном плане, а в столбце вектора Pj – значение
Значение F0 равно скалярному произведению вектора Р0 на вектор сбаз:
После заполнения таблицы (1.1) исходный опорный план проверяют на оптимальность. Для этого просматривают элементы (m+1) – ой строки таблицы. В результате может иметь место один из следующих трех случаев:
1) Значения Δj больше или равны нулю для всех
2) Δj<0 для некоторого j и все соответствующие этому индексу величины
3) Δj<0 для некоторых индексов j, и для каждого такого j по крайней мере одно из чисел aij>0.
В первом случае на основании признака оптимальности исходный опорный план является оптимальным. Во втором случае целевая функция не ограничена сверху на множестве планов, а в третьем случае можно перейти от исходного плана к новому опорному плану, при котором значение целевой функции увеличится. Этот переход от нового опорного плана к другому осуществляется исключением из исходного базиса какого-нибудь из векторов и введением в него нового вектора, исходя из максимальной абсолютной величины отрицательных чисел Δj. Если таких чисел несколько, то в базис вводится вектор, имеющий тот же индекс, что и максимум из чисел cj, где Δj<0.
Пусть
Пусть это достигается для некоторого i=r. Тогда из базиса исключается вектор Рr, а число ark называют разрешающим (генеральным) элементом. Столбец и строку, на пересечении которых находится элемент arkназывают направляющими (генеральными).
После выделения направляющей строки и направляющего столбца находят новый опорный план и коэффициенты разложения векторов Рj через векторы нового базиса, соответствующего новому опорному плану. Положительные компоненты нового опорного плана вычисляются по формулам:
После вычисления aijиbi согласно формулам (1.6) и (1.7) их значения заносят в новую таблицу. Элементы (m+1)-ой строки вычисляются на основе их определения. После заполнения новой симплекс-таблицы просматривают элементы (m+1)-ой строки. Если все
1.2 Двойственная задача линейного программирования
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной (прямой) задаче.
Рассмотрим следующую задачу линейного программирования.
при условиях
Определение. Задача, состоящая в нахождении минимального значения функции
при условиях
называется двойственной по отношению к задаче (1.8)–(1.10).
Задачи (1.8)–(1.10) и (1.11)–(1.13) образуют пару задач, называемую в линейном программировании двойственной парой.
1.2.1 Правила составления двойственной задачи
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
Целевая функция исходной задачи (1.8)–(1.10) исследуется на максимум, а целевая функция двойственной (1.11)–(1.13) –на минимум.
Матрица, составленная из коэффициентов при неизвестных в системе ограничений (1.9) исходной задачи (7.1)–(7.3), и аналогичная матрица в двойственной задаче (1.8)–(1.10) получаются друг из друга транспонированием (т.е. заменой строк столбцами, а столбцов – строками).
Число переменных в двойственной задаче (1.11)–(1.13) равно числу соотношений в системе (1.9) исходной задачи (1.8)–(1.10), а число ограничений в системе (1.12) двойственной задачи–числу переменных в исходной задаче.
Коэффициентами при неизвестных в целевой функции (1.11) двойственной задачи (1.11)–(1.13) являются свободные члены в системе (1.9) исходной задачи (1.8)–(1.10) а правыми частями в соотношениях системы (1.12) двойственной задачи – коэффициенты при неизвестных в целевой функции (1.8) исходной задачи.
Если переменная
1.2.2 Правила анализа на чувствительность двойственной оценки
Всякое изменение исходных данных прямой задачи может оказать влияние, как на ее оптимальный план, так и на систему оптимальных двойственных оценок. Поэтому, чтобы проводить экономический анализ с использованием двойственных оценок, нужно знать их интервал устойчивости.
Рассмотрим пару двойственных задач.
Исходная задача: найти максимум функции
при условиях
Двойственная задача: найти минимум функции
при условиях
Предположим, что задача (7.7)–(7.9) имеет невырожденные опорные планы и хотя бы один из них является оптимальным.
Максимальное значение целевой функции (7.7) задачи (7.7)–(7.9) будем рассматривать как функцию свободных членов системы линейных уравнений (7.8):
Теорема. В оптимальном плане двойственной задачи (7.10), (7.11) значение переменной
Последнее равенство означает, что изменение значений величин