Смекни!
smekni.com

Моделирование системы массового обслуживания (стр. 3 из 3)

Например, если в качестве СМО рассматривается предприятие, выполняющее некоторые заказы, то эти величины представляют интерес для владельцев предприятия.

Величины Pотк, Pобсл, w и t характеризуют качество обслуживания заявок.

Они представляют интерес с точки зрения пользователей СМО. Желательна минимизация значений Pотк, w , t и максимизация Pобсл.

Величины q и k обычно используются в качестве вспомогательных для расчета других характеристик СМО.

Формулы (4.1)–(4.10) могут применяться для расчета характеристик любых разомкнутых СМО, независимо от количества каналов, потока заявок, закона распределения времени обслуживания и т.д. [4]

Обозначения:

время работы СМО, час [T]: 7

интенсивность поступления заявок, ед./час [L]: 7

число обслуживающих каналов, ед. [N]: 3

максимальная длина очереди, ед. [M]: 4

закон распределения времени обслуживания (exp/evenly) [ZR]: exp

среднее время обслуживания [TO]: 0,5

погрешность вычислений [E]: 0,1

количество прогонов модели

[5].

В связи с большим объемом данных по реализации 100 прогонов, приведу результаты одного в Таблице 4.1

Таблица 4.1

время прихода заявки время начала обслуживания время конца обслуживания канал номер в очереди время обслуживания заявки время ожидания (в очереди)
0.13423 0.13423 1.07323 1 0 0.939 0
0.172969 0.172969 0.177969 2 0 0.005 0
0.372996 0.372996 0.498996 2 0 0.126 0
0.395133 0.395133 1.477133 3 0 1.082 0
0.454734 0.498996 0.708996 2 0->1 0.21 0.044261
1.0321 1.0321 1.0741 2 0 0.042 0
1.192161 1.192161 1.804161 1 0 0.612 0
1.304736 1.304736 1.508736 2 0 0.204 0
1.423904 1.477133 1.500133 3 0->1 0.023 0.053228
1.498956 1.500133 1.501133 3 0->1 0.001 0.001176
1.583731 1.583731 1.738731 2 0 0.155 0
1.72184 1.72184 2.37884 3 0 0.657 0
1.768943 1.768943 2.605943 2 0 0.837 0
1.929808 1.929808 1.941808 1 0 0.012 0
1.949207 1.949207 4.358207 1 0 2.409 0
2.020496 2.37884 2.70784 3 0->1 0.329 0.358344
2.199114 2.605943 2.791943 2 1->2 0.186 0.406828
2.401371 2.70784 4.36184 3 1->2 1.654 0.306469
2.666255 2.791943 2.986943 2 1->2 0.195 0.125687
2.728184 2.986943 3.338943 2 1->2 0.352 0.258758
3.364248 3.364248 3.379248 2 0 0.015 0
3.450507 3.450507 3.584507 2 0 0.134 0
3.798883 3.798883 4.041883 2 0 0.243 0
3.870281 4.041883 4.080883 2 0->1 0.039 0.171602
4.028639 4.080883 5.240883 2 1->2 1.16 0.052243
4.074847 4.358207 4.730207 1 1->2 0.372 0.28336
4.316383 4.36184 5.63084 3 1->2 1.269 0.045457
4.465872 4.730207 4.902207 1 0->1 0.172 0.264335
4.494469 4.902207 5.309207 1 1->2 0.407 0.407737
4.528788 5.240883 5.272883 2 2->3 0.032 0.712094
4.536596 5.272883 6.252883 2 3->4 0.98 0.736286
4.565434 -1 - - 4->4 0 -
4.580016 -1 - - 4->4 0 -
4.644491 -1 - - 4->4 0 -
4.944335 5.309207 5.662207 1 2->3 0.353 0.364871
5.064146 5.63084 5.90084 3 2->3 0.27 0.566694
5.117229 5.662207 5.743207 1 2->3 0.081 0.544977
5.201751 5.743207 6.242207 1 2->3 0.499 0.541455
5.525887 5.90084 6.12684 3 1->2 0.226 0.374952
5.5837 6.12684 6.68084 3 2->3 0.554 0.543139
5.595149 6.242207 7.331207 1 2->3 1.089 0.647057
5.626051 6.252883 6.354883 2 2->3 0.102 0.626831
5.741963 6.354883 6.773883 2 2->3 0.419 0.612919
5.790596 6.68084 7.11084 3 2->3 0.43 0.890244
6.176534 6.773883 7.871883 2 1->2 1.098 0.597348
6.310764 7.11084 8.88584 3 2->3 1.775 0.800075
6.407596 7.331207 8.878207 1 2->3 1.547 0.92361
6.592344 7.871883 8.082883 2 2->3 0.211 1.279538
6.687681 8.082883 9.866883 2 2->3 1.784 1.395202
6.702902 8.878207 8.940207 1 2->3 0.062 2.175304
6.910557 8.88584 9.59184 3 1->2 0.706 1.975282

Окончание обслуживания каждым каналом:

канал 1: 8.940207

канал 2: 9.866883

канал 3: 9.59184

Суммарное время простоя на 3 каналах: 2.33993000000001 час за общее время обслуживания 28.39893 часов,

минимальное время ожидания: 0

максимальное время ожидания: 2.175304

среднее время ожидания: 0.374262

количество отказов: 3, 588%

5. Анализ результатов испытаний

Средние значения по 100 прогонам:

Среднее количество заявок за рабочий период: 49

Среднее количество отказов: 0.8, 1.63%

Вероятность обслуживания: 98.37%

Относительная пропускная способность: 0.9837

Абсолютная пропускная способность [ед./час]: 6.88

Среднее время простоя на 3 каналах 2.55ч за период обслуживания 7 часов

Вероятность простоя СМО: 12.14%

Коэффициент загрузки СМО: 87.86%

Среднее число занятых каналов: 1.94 из 3

Среднее время ожидания: 0.88

Среднее время пребывания заявки в СМО (ожидание + обслуживание): 1.38

Среднее максимальное время ожидания: 2.13

Средняя длина очереди: 0.49

По коэффициенту загрузки можно судить о качестве загрузки СМО. Используя формулы 4.1 - 4.4 и таблицу 4.1, получим значение 87.86%

Коэффициент загрузки равен 0,8786 и находится в промежутке больше 0,85. Это значит, что СМО перегружена.

Если рассматривать данную СМО с целью получения прибыли, то по формулам 4.2, 4.10 и с помощью таблицы 4.1 получим значение пропускной способности 6,88. Для получения прибыли важна ее максимизация.

Заключение

По мере усложнения производственных процессов, развития науки, проникновения в тайны функционирования и развития живых организмов появились задачи, которые не решались с помощью традиционных математических методов и в которых все больше место стал занимать собственно процесс постановки задачи, возросла роль эвристических методов, усложнился эксперимент, доказывающий адекватность формальной математической модели.

В области применения имитационного моделирования лежат задачи моделирования биологических систем, военные, экономические, социальные. Что позволяет решать проблемы различного характера и большого объема.

В данной курсовой мы рассмотрели примитивную задачу о поступлении заявок (клиентов) в канал (парикмахерскую), убедились в эффективности модели.

Список использованных источников

1 Голик Е.С. Системное моделирование. Ч.1. Имитационное моделирование. Факторный эксперимент: учебно-методический комплекс (учебное пособие)/Е.С. Голик, О.В. Афанасьева. – СПб: СЗТУ, 2007. – 211 с.

2 Голик Е.С. Математические методы системного анализа и теории приятия решений. Ч. II: Учебное пособие. – СПб: СЗТУ, 2005, - 102 с.

3 Кудрявцев Е.М. GPSSWorld. Основы имитационного моделирования различных систем. – М.: ДМК Пресс, 2004. – 320 с.: ил. (Серия «Проектирование»).

4 Оптимизация решений на основе методов и моделей мат. программирования: Учеб. пособие по курсу «Систем. анализ и исслед. операций» для студ. спец. «Автоматизир. системы обраб. информ.» дневн. и дистанц. форм обуч. / С.С. Смородинский, Н.В. Батин. – Мн.: БГУИР, 2003. – 136 с.: ил.

5 Конспект лекций