Смекни!
smekni.com

Обработка и визуализация объектов на космических изображениях средствами пакета Contour (стр. 4 из 6)

Рис.1.12 Фрагмент оцифрованного изображения и номера цветов

Теперь пойдём по порядку (слева направо и сверху вниз) и будем в строчку выписывать номера цветов встречающихся пикселей. Получится строка примерно следующего вида:

1 2 8 3 212 45 67 45 127 4 78 225 34.

Вот эта строка и есть наши оцифрованные данные. Теперь мы можем сжать их (так как несжатые графические данные обычно имеют достаточно большой размер) и сохранить в файл [18].

Итак, под растровым (bitmap, raster) понимают способ представления изображения в виде совокупности отдельных точек (пикселей) различных цветов или оттенков. Это наиболее простой способ представления изображения, ибо таким образом видит наш глаз.

Достоинством такого способа является возможность получения фотореалистичного изображения высокого качества в различном цветовом диапазоне. Недостатком - высокая точность и широкий цветовой диапазон требуют увеличения объема файла для хранения изображения и оперативной памяти для его обработки.

Для векторной графики характерно разбиение изображения на ряд графических примитивов - точки, прямые, ломаные, дуги, полигоны. Таким образом, появляется возможность хранить не все точки изображения, а координаты узлов примитивов и их свойства (цвет, связь с другими узлами и т.д.) [19].

Вернемся к изображению на рис.1.11 Взглянем на него по-другому. На изображении легко можно выделить множество простых объектов - отрезки прямых, ломанные, эллипс, замкнутые кривые. Представим себе, что пространство рисунка существует в некоторой координатной системе. Тогда можно описать это изображение, как совокупность простых объектов, вышеперечисленных типов, координаты узлов которых заданы вектором относительно точки начала координат (рис.1.13).

Рис.1.13. Векторное изображение и узлы его примитивов

Проще говоря, чтобы компьютер нарисовал прямую, нужны координаты двух точек, которые связываются по кратчайшей прямой. Для дуги задается радиус и т.д. Таким образом, векторная иллюстрация - это набор геометрических примитивов.

Важной деталью является то, что объекты задаются независимо друг от друга и, следовательно, могут перекрываться между собой.

При использовании векторного представления изображение хранится в памяти как база данных описаний примитивов. Основные графические примитивы, используемые в векторных графических редакторах: точка, прямая, кривая Безье, эллипс (окружность), полигон (прямоугольник). Примитив строится вокруг его узлов (nodes). Координаты узлов задаются относительно координатной системы макета. Изображение будет представлять из себя массив описаний. Каждому узлу приписывается группа параметров, в зависимости от типа примитива, которые задают его геометрию относительно узла. Например, окружность задается одним узлом и одним параметром - радиусом. Такой набор параметров, которые играют роль коэффициентов и других величин в уравнениях и аналитических соотношениях объекта данного типа, называют аналитической моделью примитива [20].

Векторное изображение может быть легко масштабировано без потери деталей, так как это требует пересчета сравнительно небольшого числа координат узлов. Другой термин - "object-orientedgraphics".

Самой простой аналогией векторного изображения может служить аппликация. Все изображение состоит из отдельных кусочков различной формы и цвета (даже части растра), "склеенных" между собой. Понятно, что таким образом трудно получить фотореалистичное изображение, так как на нем сложно выделить конечное число примитивов, однако существенными достоинствами векторного способа представления изображения, по сравнению с растровым, являются:

векторное изображение может быть легко масштабировано без потери качества, так как это требует пересчета сравнительно небольшого числа координат узлов;

графические файлы, в которых хранятся векторные изображения, имеют существенно меньший, по сравнению с растровыми, объем (порядка нескольких килобайт) [21].

Как видно, векторным можно назвать только способ описания изображения, а само изображение для нашего глаза всегда растровое [22].

Постановка задачи

Дешифрирование космических снимков, один из методов изучения местности по её изображению, полученному посредством космической съёмки. Заключается в выявлении и распознавании объектов, установлении их качественных и количественных характеристик, а также регистрации результатов в графической (условными знаками), цифровой и текстовой формах [23]. Дешифрирование имеет общие черты, присущие методу в целом, и известные различия, обусловленные особенностями отраслей науки и практики, в которых оно применяется наряду с другими методами исследований.

Эффективность дешифрирования, т.е. раскрытия содержащейся в снимках информации, определяется особенностями изучаемых объектов и характером их передачи при космической съёмке (дешифровочными признаками), совершенством методики работы, оснащённостью приборами и свойствами исполнителей дешифрирования. В ряду дешифровочных (демаскирующих) признаков различают прямые и косвенные (нередко с выделением комплексных). К прямым признакам относят: размеры, форму, тени собственные и падающие (иногда их считают косвенным признаком), фототон или цвет и сложный признак - рисунок или структуру изображения. К косвенным - указывающие на наличие или характеристику объекта, хотя он и не получил непосредственного отображения на снимке из космоса в силу условий съёмки или местности. Например, растительность и микрорельеф являются индикаторами при дешифрировании задернованных почв.

Цели работы:

1) разработать программный пакет для обработки космических изображений;

2) провести сравнительный анализ программ Contourи ErdasImagineдля оценки качества реализации собственного алгоритма сегментации;

3) с помощью собственного алгоритма сегментации провести анализ двух съемочных систем на примере LandsatETM+ и Spot5 для установления разницы в снимках с различным пространственным разрешением.

В задачи исследования входят:

1. анализ алгоритмов распознавания изображений;

2. выявление оптимального по скорости и качеству алгоритма сегментации;

3. составление блок-схемы программы по распознаванию изображений на основе выбранного алгоритма;

4. ознакомление с географическими информационными системами (ГИС), растровой и векторной моделей данных и их форматными представлениями;

5. выявление подходящего векторного формата для последующего его применения в ГИС-проектах;

6. создание географической привязки;

7. векторизация растровых контуров и сохранение в виде shp-файлов;

8. подобрать каналы с максимальной информативностью

Для решения задачи дешифрирования разработаны профессиональные программные пакеты, которые по своим функциям удовлетворяют предъявляемым требованиям. Основным недостатком этих пакетов является высокая стоимость, большие требования к системным ресурсам используемых персональных компьютеров и сложность в эксплуатации этих программ.

2. Методика эксперимента

В пакет программного обеспечения входит (рис.2.1):

Рис.2.1 Блок-схема программы

Автоматическое выделение границ основано на сегментации путем наращивания областей. Блок-схема данного алгоритма представлена на рис.2.2.

Рис.2.2 Блок-схема алгоритма сегментации путем наращивания областей

3. Экспериментальные результаты

Блок-схема программного обеспечения "Contour" по работе с растровыми изображениями (рис.3.1).

Рис.3.1 Блок-схема программы

Опишем более подробно все этапы алгоритма:

· На начальном этапе производим загрузку растрового изображения в любом графическом формате (TIF, BMP, JPG…). Рекомендуется в BMP, т.к. данный формат не предусматривает сжатия, и соответственно потерь уже на начальном этапе.

· Далее заносим все необходимые сведения о сцене для дальнейшей работы: проекции, зоны, датума, сфероида (для географической привязки и правильного отображения полигонов в ГИС), верхнего левого угла (для расчета размеров снимка), пространственного разрешения пикселя (для подсчета площадей и периметров полигонов).

· Теперь можно приступать к оконтуриванию гарей (или других объектов) методом сегментации путем наращивания областей. Однородность области проверяется на уровне порогов трех компонент RGB-композита. Осуществлена реализация ручной задачи данных порогов.

· Зная пространственное разрешение можно подсчитать площадь и периметр гари по количеству входящих в полигон пикселей. Каждому выделенному объекту присваивается идентификационный номер, и все сведения заносятся в базу данных.

· Затем следует сохранение контуров в бинаризованном виде (0 - фон, 1 - граница).

· Привязка к мировым географическим координатам.

· Далее путем векторизации растровых полигонов получение векторного типа данных.

· Полученные векторные данные хранятся в базе данных, которую уже можно использовать для дальнейшей работы в мировых ГИС-стандартах.

· И на данном последнем этапе загрузка векторных полигонов в ГИС-проекты.

Рис.3.2 Вид рабочего окна программы "Contour"

Программа "Contour" (рис.3.2) может выполнять следующие операции и функции:

· Изменять масштаб изображения, задаваемый как бегунком так и ручным вводом;