В центре сети содержится компьютер, который выступает в роли сервера.
В центре сети с данной топологией содержится не компьютер, а концентратор, или коммутатор, что выполняет ту же функцию, что и повторитель. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи.
Сравнение с другими типами сетей
Достоинства
· выход из строя одной рабочей станции не отражается на работе всей сети в целом;
· хорошая масштабируемость сети;
· лёгкий поиск неисправностей и обрывов в сети;
· высокая производительность сети (при условии правильного проектирования);
· гибкие возможности администрирования.
Недостатки
· выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
· для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
· конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
Применение
Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара. UTP категория 3 или 5.
Днем рождения Ethernet можно считать 22 мая 1973 г., когда Роберт Меткалф (Robert Metcalfe) и Дэвид Боггс (David Boggs) опубликовали докладную записку, в которой описывалась экспериментальная сеть, построенная ими в Исследовательском центре фирмы Xerox в Пало-Альто. При рождении сеть получила имя Ethernet, базировалась на толстом коаксиальном кабеле и обеспечивала скорость передачи данных 2,94 Мбит/с. В декабре того же года Меткалф опубликовал докторскую работу "Packet Communication" ("Пакетная связь"), а в июле 1976 г. Меткалф и Боггс выпустили совместный труд "Ethernet: Distributed Packet Switching for Local Computer Networks" ("Ethernet: распределенная пакетная коммутация для локальных компьютерных сетей"). Таким образом, была создана теоретическая база для дальнейшего развития технологии. Ключевой фигурой в судьбе Ethernet становится Роберт Меткалф, который в 1979 г. для воплощения своих идей в жизнь создает собственную компанию 3Com, одновременно начиная работать консультантом в Digital Equipment Corporation (DEC). В DEC Меткалф получает задание на разработку сети, спецификации на которую не затрагивали бы патентов Xerox. Создается совместный проект Digital, Intel и Xerox, известный под названием DIX. Задачей консорциума DIX был перевод Ethernet из лабораторно-экспериментального состояния в технологию для построения новых систем, работающих с немалой на то время скоростью передачи данных 10 Мбит/с. Таким образом, Ethernet превращался из разработки Xerox в открытую и доступную всем технологию, что оказалось решающим в становлении его как мирового сетевого стандарта. В феврале 1980 г. результаты деятельности DIX были представлены в IEEE, где вскоре была сформирована группа 802 для работы над проектом. Ethernet закреплял свои позиции в качестве стандарта. Для успешного внедрения технологии важное значение сыграли дальнейшие шаги "родителей" Ethernet по взаимодействию с другими производителями чипов и аппаратного обеспечения - так, например, группа разработчиков Digital представила чип Ethernet и исходные тексты его программного обеспечения компаниям Advanced Micro Devices (AMD) и Mostek. В результате возможность производить совместимые чипсеты Ethernet получили и другие компании, что сказалось на качестве железа и снижении его стоимости. В марте 1981 г. 3Com представила 10 Мбит/с Ethernet-трансивер, а в сентябре 1982 г. - первый Ethernet-адаптер для ПК. После выхода первых изделий, в июне 1983 г. IEEE утвердил стандарты Ethernet 802.3 и Ethernet 10base-5. В качестве среды передачи предусматривался "толстый" коаксиальный кабель, а каждый узел сети подключался с помощью отдельного трансивера. Такая реализация оказалась дорогостоящей. Дешевой альтернативой с применением менее дорогого и более тонкого коаксиального кабеля, стал 10base-2 или ThinNet. Станции уже не требовали отдельных трансиверов для подключения к кабелю. В такой конфигурации Ehternet начал победное шествие по просторам экс-СССР. Главными его преимуществами была простота развертывания и минимальное количество активного сетевого оборудования. Сразу же определились и недостатки. На время подключения новых станций приходилось останавливать работу всей сети. Для выхода сети из строя достаточно было обрыва кабеля в одном месте, поэтому эксплуатация кабельной системы требовала от технического персонала проявлений прикладного героизма. Следующим шагом развития Ethernet стала разработка стандарта 10Base-T, предусматривавшего в качестве среды передачи неэкранированную витую пару (Unshielded Twisted Pair - UTP). В основу этого стандарта легли разработки SynOptics Communications под общим названием LattisNet, которые относятся к 1985 г. В 10Base-T использовалась топологии "звезда", в которой каждая станция соединялась с центральным концентратором (hub). Такой вариант реализации устранял необходимость прерывания работы сети на время подключения новых станций и позволял локализовать поиск обрывов проводки до одной линии концентратор-станция. Производители получили возможность встраивать в концентраторы средства мониторинга и управления сетью. В сентябре 1990 г. IEEE утверждает стандарт 10Base-T.
В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю (рис. 3). Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры. Говорят, что при этом происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что приводит к искажению информации.
Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности немедленного обнаружения коллизии всеми станциями сети, ситуация коллизии усиливается посылкой в сеть станциями, начавшими передачу своих кадров, специальной последовательности битов, называемой jam-последовательностью.
После обнаружения коллизии передающая станция обязана прекратить передачу и ожидать в течение короткого случайного интервала времени, а затем может снова сделать попытку передачи кадра.
Из описания метода доступа видно, что он носит вероятностный характер, и вероятность успешного получения в свое распоряжение общей среды зависит от загруженности сети, то есть от интенсивности возникновения в станциях потребности передачи кадров. При разработке этого метода предполагалось, что скорость передачи данных в 10 Мб/с очень высока по сравнению с потребностями компьютеров во взаимном обмене данными, поэтому загрузка сети будет всегда небольшой.
Метод CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети:
Между двумя последовательно передаваемыми по общей шине кадрами информации должна выдерживаться пауза в 9.6 мкс; эта пауза нужна для приведения в исходное состояние сетевых адаптеров узлов, а также для предотвращения монопольного захвата среды передачи данных одной станцией.
При обнаружении коллизии (условия ее обнаружения зависят от применяемой физической среды) станция выдает в среду специальную 32-х битную последовательность (jam-последовательность), усиливающую явление коллизии для более надежного распознавания ее всеми узлами сети.
После обнаружения коллизии каждый узел, который передавал кадр и столкнулся с коллизией, после некоторой задержки пытается повторно передать свой кадр. Узел делает максимально 16 попыток передачи этого кадра информации, после чего отказывается от его передачи. Величина задержки выбирается как равномерно распределенное случайное число из интервала, длина которого экспоненциально увеличивается с каждой попыткой. Такой алгоритм выбора величины задержки снижает вероятность коллизий и уменьшает интенсивность выдачи кадров в сеть при ее высокой загрузке.
Топология сети является одноуровневой системой коммутаторов. Разрабатываемая сеть не имеет большой протяженности, поэтому многоуровневая структура не требуется. Коммутаторы внутри здания соединены витой парой.
Сеть состоит из двух аптечных магазинов, один из которых является центральным офисом, и удаленного склада, расположенного за чертой города.
Подключение к сети пользователей в каждом из описанных объектов производится через коммутатор. Все пользователи подключаются к сети с использованием технологии VLAN и функции маршрутеризации коммутаторов. Связь между удаленными зданиями производится при помощи сети internet.