Смекни!
smekni.com

Технология OLAP (стр. 2 из 5)

Динамическая обработка разреженных матриц (Dynamic Sparse Matrix Handling). Инструмент OLAP должен обеспечивать оптимальную обработку разреженных матриц. Скорость доступа должна сохраняться вне зависимости от расположения ячеек данных и быть постоянной величиной для моделей, имеющих разное число измерений и различную разреженность данных.

Поддержка многопользовательского режима (Multi-User Support). Зачастую несколько аналитиков имеют необходимость работать одновременно с одной аналитической моделью или создавать различные модели на основе одних корпоративных данных. Инструмент OLAP должен предоставлять им конкурентный доступ, обеспечивать целостность и защиту данных.

Неограниченная поддержка кроссмерных операций (Unrestricted Cross-dimensional Operations). Вычисления и манипуляция данными по любому числу измерений не должны запрещать или ограничивать любые отношения между ячейками данных. Преобразования, требующие произвольного определения, должны задаваться на функционально полном формульном языке.

Интуитивное манипулирование данными (Intuitive Data Manipulation). Переориентация направлений консолидации, детализация данных в колонках и строках, агрегация и другие манипуляции, свойственные структуре иерархии направлений консолидации, должны выполняться в максимально удобном, естественном и комфортном пользовательском интерфейсе[3].

Гибкий механизм генерации отчетов (Flexible Reporting). Должны поддерживаться различные способы визуализации данных, то есть отчеты должны представляться в любой возможной ориентации.

Неограниченное количество измерений и уровней агрегации (Unlimited Dimensions and Aggregation Levels). Настоятельно рекомендуется допущение в каждом серьезном OLAP инструменте как минимум пятнадцати, а лучше двадцати, измерений в аналитической модели.


2 Компоненты OLAP-систем

2.1 Сервер. Клиент. Интернет

OLAP позволяет выполнять быстрый и эффективный анализ над большими объемами данных. Данные хранятся в многомерном виде, что наиболее близко отражает естественное состояние реальных бизнес-данных. Кроме того, OLAP предоставляет пользователям возможность быстрее и проще получать сводные данные. С его помощью они могут при необходимости углубляться (drill down) в содержимое этих данных для получения более детализированной информации[4].

OLAP-система состоит из множества компонент. На самом высоком уровне представления система включает в себя источник данных, OLAP-сервер и клиента. Источник данных представляет собой источник, из которого берутся данные для анализа. Данные из источника переносятся или копируются на OLAP-сервер, где они систематизируются и подготавливаются для более быстрого впоследствии формирования ответов на запросы. Клиент - это пользовательский интерфейс к OLAP-серверу. В этом разделе статьи описываются функции каждой компоненты и значение всей системы в целом. Источники. Источником в OLAP-системах является сервер, поставляющий данные для анализа. В зависимости от области использования OLAP-продукта источником может служить Хранилище данных, наследуемая база данных, содержащая общие данные, набор таблиц, объединяющих финансовые данные или любая комбинация перечисленного. Способность OLAP-продукта работать с данными из различных источников очень важна. Требование единого формата или единой базы, в которых бы хранились все исходные данные, не подходит администраторам баз данных. Кроме того, такой подход уменьшает гибкость и мощность OLAP-продукта. Администраторы и пользователи полагают, что OLAP-продукты, обеспечивающие извлечение данных не только из различных, но и из множества источников, оказываются более гибкими и полезными, чем те, что имеют более жесткие требования.

Сервер. Прикладной частью OLAP-системы является OLAP-сервер. Эта составляющая выполняет всю работу (в зависимости от модели системы), и хранит в себе всю информацию, к которой обеспечивается активный доступ. Архитектурой сервера управляют различные концепции. В частности, основной функциональной характеристикой OLAP-продукта является использование для хранения данных многомерной (ММБД, MDDB) либо реляционной (РДБ, RDB) базы данных. Агрегированные/Предварительно агрегированные данные

Быстрая реализация запросов является императивом для OLAP. Это один из базовых принципов OLAP - способность интуитивно манипулировать данными требует быстрого извлечения информации. В целом, чем больше вычислений необходимо произвести, чтобы получить фрагмент информации, тем медленнее происходит отклик. Поэтому, чтобы сохранить маленькое время реализации запросов, фрагменты информации, обращение к которым обычно происходит наиболее часто, но которые при этом требуют вычисления, подвергаются предварительной агрегации. То есть они подсчитываются и затем хранятся в базе данных в качестве новых данных. В качестве примера типа данных, который допустимо рассчитать заранее, можно привести сводные данные - например, показатели продаж по месяцам, кварталам или годам, для которых действительно введенными данными являются ежедневные показатели[5].

Различные поставщики придерживаются различных методов отбора параметров, требующих предварительной агрегации и числа предварительно вычисляемых величин. Подход к агрегации влияет одновременно и на базу данных и на время реализации запросов. Если вычисляется больше величин, вероятность того, что пользователь запросит уже вычисленную величину, возрастает, и поэтому время отклика сократиться, так как не придется запрашивать изначальную величину для вычисления. Однако, если вычислить все возможные величины - это не лучшее решение - в таком случае существенно возрастает размер базы данных, что сделает ее неуправляемой, да и время агрегации будет слишком большим. К тому же, когда в базу данных добавляются числовые значения, или если они изменяются, информация эта должна отражаться на предварительно вычисленных величинах, зависящих от новых данных. Таким образом, и обновление базы может также занять много времени в случае большого числа предварительно вычисляемых величин. Поскольку обычно во время агрегации база данных работает автономно, желательно, чтобы время агрегации было не слишком длительным.

Клиент. Клиент - это как раз то, что используется для представления и манипуляций с данными в базе данных. Клиент может быть и достаточно несложным - в виде таблицы, включающей в себя такие возможности OLAP, как, например, вращение данных (пивотинг) и углубление в данные (дриллинг), и представлять собой специализированное, но такое же простое средство просмотра отчетов или быть таким же мощным инструментом, как созданное на заказ приложение, спроектированное для сложных манипуляций с данными. Интернет является новой формой клиента. Кроме того, он несет на себе печать новых технологий; множество интернет-решений существенно отличаются по своим возможностям в целом и в качестве OLAP-решения - в частности. В данном разделе обсуждаются различные функциональные свойства каждого типа клиентов.

Несмотря на то, что сервер - это как бы "хребет" OLAP-решения, клиент не менее важен. Сервер может обеспечить прочный фундамент для облегчения манипуляций с данными, но если клиент сложен или малофункционален, пользователь не сможет воспользоваться всеми преимуществами мощного сервера. Клиент настолько важен, что множество поставщиков сосредотачивают свои усилия исключительно на разработке клиента. Все, что включается в состав этих приложений, представляет собой стандартный взгляд на интерфейс, заранее определенные функции и структуру, а также быстрые решения для более или менее стандартных ситуаций. Например, популярны финансовые пакеты. Заранее созданные финансовые приложения позволят специалистам использовать привычные финансовые инструменты без необходимости проектировать структуру базы данных или общепринятые формы и отчеты. Инструмент запросов/Генератор отчетов. Инструмент запросов или генератор отчетов предлагает простой доступ к OLAP-данным. Они имеют простой в использовании графический интерфейс и позволяют пользователям создавать отчеты перемещением объектов в отчет методом "drag and drop". Тогда как традиционный генератор отчетов предоставляет пользователю возможность быстро выпускать форматированные отчеты, генераторы отчетов, поддерживающие OLAP, формируют актуальные отчеты. Конечный продукт представляет собой отчет, имеющий возможности углубления в данные до уровня подробностей, вращения (пивотинг) отчетов, поддержки иерархий и др.. Add-Ins (дополнения) электронных таблиц.

Сегодня во многих направлениях бизнеса с помощью электронных таблиц производятся различные формы анализа корпоративных данных. В каком-то смысле это идеальное средство создания отчетов и просмотра данных. Аналитик может создавать макросы, работающие с данными в выбранном направлении, а шаблон может быть спроектирован таким образом, что, когда происходит ввод данных, формулы рассчитывают правильные величины, исключая необходимость неоднократного ввода простых расчетов.

Тем не менее, все это дает в результате "плоский" отчет, что означает, что как только он создан, трудно рассматривать его в различных аспектах. Например, диаграмма отображает информацию за некоторый временной период, - скажем, за месяц. И если некто желает увидеть показатели за день (в противоположность данным за месяц), необходимо будет создать абсолютно новую диаграмму. Предстоит определить новые наборы данных, добавить в диаграмму новые метки и внести множество других простых, но трудоемких изменений. Кроме того, существует ряд областей, в которых могут быть допущены ошибки, что в целом уменьшает надежность. Когда к таблице добавляется OLAP, появляется возможность создавать единственную диаграмму, а затем подвергать ее различным манипуляциям с целью предоставления пользователю необходимой информации, не обременяя себя созданием всех возможных представлений. Интернет в роли клиента. Новым членом семейства OLAP-клиентов является Интернет. Существует масса преимуществ в формировании OLAP-отчетов через Интернет. Наиболее существенным представляется отсутствие необходимости в специализированном программном обеспечении для доступа к информации. Это экономит предприятию кучу времени и денег.