Острота этой проблемы еще более возросла, когда в 1903 г. Пьер Кюри сделал весьма важное открытие, обнаружив, что соли урана непрерывно выделяют тепло, причем в таком количестве, которое при сопоставлении с малой массой радиоактивного препарата представляется огромным. В своем первом качественном опыте, проведенном совместно с А. Лабордом, П. Кюри установил выделение теплоты с помощью термопары, один спай которой был окружен радиоактивным хлористым барием, а другой — чистым хлористым барием. Было обнаружено, что разница температур обоих мест спаев составляет около 1,5° С, что значительно превосходило возможные экспериментальные ошибки. Воодушевленные этим первым положительным результатом, Кюри и Лаборд произвели непосредственное измерение выделившейся теплоты, пользуясь двумя различными методами. В первом методе количество тепла, полученное металлическим блоком, внутрь которого помещалось определенное количество радиоактивного вещества, приравнивалось количеству тепла, выделенному разогреваемой током металлической спиралью, помещенной внутрь блока вместо радиоактивного образца и вызывающей такой же разогрев металлического блока. Во втором методе в калориметр Бунзена вводилась ампула с радиоактивным хлористым барием и с чистым хлористым радием и непосредственно определялось количество выделенного тепла. Оба метода давали достаточно согласующиеся результаты: в пересчете на 1 г радия получалось 100 кал в час (последующие измерения уменьшили эту цифру примерно до 25,5 кал).
Может ли быть столь большая энергия просто перехваченной радием? Неужели Вселенная пронизывается такими интенсивными потоками энергии, которые мы никак не можем обнаружить, кроме как через эти радиоактивные явления? Подобные элементарные соображения толкали физиков к тому, чтобы отказаться от первой гипотезы Кюри в пользу второй. Но предположить, что радиоактивные вещества, являясь источниками энергии, испытывают при этом какие-то медленные изменения, более глубокие, нежели обычные химические изменения, означало вновь подвергнуть обсуждению все основы атомистики.
Чтобы понять, насколько радикальным и революционным был такой новый взгляд, современный читатель должен представить себе образ мышления физиков начала нашего столетия, их мировоззрение, так сказать, полученное с молоком матери и являвшееся предметом гордости науки того времени. Атомарная структура материи, неизменность атомов, постоянство массы, сохранение энергии — таковы были основополагающие принципы, которые многим представлялись уже не гипотезами, а самоочевидными истинами. У кого же хватит смелости посягнуть на эти положения науки, подтвержденные столетием непрерывных успехов?
Нашлись два таких смельчака — мы скажем о них позже.
Радиоактивность немедленно нашла многочисленные применения в физике, химии, геологии, метеорологии, медицине. Смертоносное действие радиоактивного излучения на животные организмы произвело сильное впечатление на общественное мнение, и вновь был поднят вопрос о пользе научных исследований. За год до своей трагической гибели в Париже в уличной катастрофе Пьер Кюри в заключение своей лекции в 1905 г. в связи с присуждением ему Нобелевской премии за 1903 г. говорил: «В преступных руках радий может стать весьма опасным, и мы можем теперь задать себе вопрос, выигрывает ли человечество от знания секретов природы, достаточно ли оно созрело, чтобы пользоваться ими, не принесет ли ему вред это знание. Пример открытия Нобеля весьма характерен. Наличие мощных взрывчатых веществ сделало возможным проведение грандиозных работ. Но вместе с тем взрывчатые вещества являются страшным средством разрушения в руках преступников, вовлекающих народы в войну. Я склонен придерживаться точки зрения Нобеля, что человечество извлечет из новых открытий больше хорошего, чем плохого».