Реферат по дисциплине «Аэродинамика»
Выполнил ст. гр. С-66 Макаренко Е. В.
Омский авиационный техникум им. Н. Е. Жуковского
2003
В полете орбитальный корабль "Буран"
Сообщение ТАСС
15 ноября 1988 года в Советском Союзе проведены успешные испытания космического корабля многоразового использования "Буран".
После старта универсальной ракетно-космической транспортной системы "Энергия" с кораблем "Буран" орбитальный корабль вышел на расчетную орбиту, совершил двухвитковый полет вокруг Земли и приземлился в автоматическом режиме на посадочной полосе космодрома Байконур.
Это - выдающийся успех отечественной науки и техники, открывающий качественно новый этап в советской программе космических исследований.
"БУРАН" - советский крылатый орбитальный корабль многоразового использования. Предназначен для выведения на орбиту вокруг Земли различных космических объектов и их обслуживания; доставки модулей и персонала для сборки на орбите крупногабаритных сооружений и межпланетных комплексов; возврата на Землю неисправных или выработавших свой ресурс спутников; освоения оборудования и технологий космического производства и доставки продукции на Землю; выполнения других грузопассажирских перевозок по маршруту Земля-космос-Земля, решения ряда оборонных задач.
15 ноября 1988 года орбитальный корабль "Буран" совершил в полностью автоматическом режиме управления свой первый вылет в космос продолжительностью 205 минут, положив начало новому направлению в развитии отечественной космонавтики - созданию многоразовых воздушно-космических летательных аппаратов.
Успешное выполнение полета и высокоточная посадка в условиях штормового предупреждения метеорологов позволяет сделать вывод, что в целом предполетные аэродинамические характеристики ОК, полученные в результате выполнения обширной программы комплексных расчетно-теоретических и экспериментальных исследований, следует считать достаточно достоверными.
Анализ результатов полета представляет самостоятельный интерес и изложен ниже предельно кратко.
Комплексная обработка внешне траекторных измерений, телеметрической информации, результатов зондирования атмосферы и данных метеообстановки в районе аэродрома посадки позволила определить силовые, моментные и балансировочные аэродинамические характеристики планера и сравнить их с расчетными, определенными по дополетной аэродинамике в фактических условиях реального полета.
Аэродинамическая компоновка
Планер ОК по внешнему виду и составу элементов напоминает обычный самолет схемы "бесхвостка" и состоит из фюзеляжа, крыла, снабженного элевонами, функционирующими как рули высоты при управлении по тангажу и как элероны при управлении по крену, вертикального оперения с рулем направления, конструктивно состоящим из двух расщепляющихся створок, работающих при раскрытии в режиме воздушного тормоза, а также балансировочного щитка в хвостовой части для обеспечения балансировки и разгрузки элевонов на гиперзвуковых скоростях и больших углах атаки, где их отклонения ограничены температурным фактором.
К особенностям конфигурации крыла следует отнести его двойную стреловидность, что обеспечивает необходимые несущие свойства и благоприятное изменение аэродинамических характеристик на сверхзвуковых и трансзвуковых скоростях полета.
Профиль крыла ОК по сравнению с профилями, применяющимися в современной сверхзвуковой авиации, отличается большей толщиной и большим радиусом передней кромки, что уменьшает температуру нагрева конструкции при входе и полете в плотных слоях атмосферы. Для управления по крену и рысканию при полете на больших скоростях и больших углах атаки, когда руль направления неэффективен, используется реактивная система управления ОК, двигатели которой расположены в двух блоках в хвостовой части фюзеляжа.
В процессе оптимизации аэродинамических характеристик планера были проведены многочисленные экспериментальные исследования параметрических моделей ОК на дозвуковых, трансзвуковых, сверхзвуковых и гиперзвуковых скоростях в аэродинамических трубах ЦАГИ, которые определили влияние на аэродинамические характеристики формы профиля крыла, его стреловидности по передней кромке наплыва и основной трапеции, формы носовой части и хвостовой части, профиля и габаритных размеров вертикального оперения и установки внешних элементов. По результатам исследований были выбраны:
- крыло со стреловидностью 450 по основной трапеции, 780 по наплыву, с симметричным базовым профилем, максимальная толщина которого, равная 12% хорды, расположена на 40% ее длины;
- фюзеляж с цилиндрической подрезкой по нижней образующей хвостовой части в боковой проекции, равной 140;
- вертикальное оперение с чечевицеобразным профилем, максимальная толщина которого расположена на 60% длины хорды
Анализ характеристик показал, что максимальное балансировочное значение аэродинамического качества К на дозвуковом режиме полета равно 5,6, а на гиперзвуковом режиме - 1,3 и что полученные аэродинамические характеристики обеспечивают продольную балансировку ОК на гиперзвуковых, сверхзвуковых, трансзвуковых и дозвуковых режимах полета за счет отклонения элевонов в диапазоне от –350 до +200, балансировочного щитка от –100 до +200 и раскрытия воздушного тормоза до 870 .
По своему назначению ОК "Буран" является многоцелевым транспортным воздушно-космическим летательным аппаратом. Как "грузовик" корабль должен совершать челночные операции по транспортировке экипажей и грузов заданных масс и габаритов на трассе "Земля – Орбита - Земля".
Как воздушно-космический, двухсредный летательный аппарат ОК должен, завершая полет, выполнять управляемый планирующий спуск из космоса с погружением в плотные слои атмосферы и посадкой в заданной точке земной поверхности. При этом требования безопасности экипажа, сохранности груза и многоразового использования определили авиационный тип посадки с приземлением на бетонную взлетно-посадочную полосу (ВПП) конечных размеров.
Указанные факторы и отечественный опыт создания орбитального самолета предопределили облик корабля и его комплексно-рациональную аэродинамическую компоновку как низкоплана схемы "бесхвостка" с центральным расположением вертикального оперения.
Кабинный модуль с остеклением, обеспечивающим экипажу возможность визуальной посадки, средняя часть фюзеляжа, заданная геометрией цилиндрического отсека полезного груза размером 4,6 х 18 м, и кормовой отсек, в котором размещена объединенная двигательная установка с наружными блоками двигателей реактивной системы управления - эти основные агрегаты фюзеляжа сформировали его внешние обводы и определили площадь донного среза.
Низкое расположение крыла двойной стреловидности, интегрированного с фюзеляжем, образует по нижним обводам общую несущую поверхность, отвечающую требованиям продольной балансировки на гиперзвуковых скоростях и теплозащиты планера при прохождении теплового барьера, и обеспечивает наиболее рациональные компоновку и конструктивно-силовую схему корабля. Компоновочная схема "низкоплан" дает возможность максимально использовать экранный эффект на посадке при подходе к поверхности ВПП и приземлении.
Органы аэродинамического управления по тангажу, крену и рысканью обычны для схемы "бесхвостка" - это двухсекционные элевоны на консолях крыла и руль направления на киле. Кроме них орбитальный самолет имеет два дополнительных органа управления, специфичных для воздушно-космического планера.
На обрезе кормовой части фюзеляжа расположен балансировочный щиток, который в исходном положении представляет собой продолжение нижней поверхности фюзеляжа. Он предназначен для корректировки балансировочного положения элевонов и их разгрузки при изменении центровки в пределах заданного эксплуатационного диапазона.
Руль направления выполнен расщепляющимся на две створки и при раскрытии работает как воздушный тормоз, что при бездвигательном планировании дает возможность управления траекторией и скоростью полета путем изменения аэродинамического сопротивления и, тем самым, аэродинамического качества. Вследствие верхнего расположения воздушный тормоз при раскрытии создает моменты на кабрирование. Парирование их с помощью элевонов приводит к созданию дополнительной подъемной силы на режимах посадки, исключает характерные для самолетов схемы "бесхвостка" потери на балансировку.
Компоновка
1 - стыковочный узел;
2 - носовая часть фюзеляжа (НЧФ);
3 - переходный отсек;
4 - герметичный модуль кабины;
5 - носовой блок двигателей управления;
6 - средняя часть фюзеляжа (СЧФ);
7 - хвостовая часть фюзеляжа (ХЧФ);
8 - створки отсека полезного груза с панелями радиационного теплообменника
Герметичная кабина ОК, в которой находится и работает в полете экипаж, размещается в носовой части фюзеляжа и имеет два этажа: верхний - командный отсек (КО) и нижний - бытовой отсек (БО), под которым расположен агрегатный отсек с не требующим постоянного доступа оборудованием.
Командный отсек в своей передней части имеет два рабочих места (РМ-1 и РМ-2), оснащенных катапультными креслами. В конструкции кабины предусмотрены аварийные выходы, образующиеся с помощью взрывных шнуров.
Вариант кабины, рассчитанный на экипаж из четырех человек с индивидуальными средствами спасения, отличается тем, что в передней части БО (аварийные выходы перед остеклением кабины) устанавливаются два дополнительных катапультных кресла, а приборные отсеки переносятся к задней стенке кабины.
Снаружи на задней стенке кабины установлен модуль командных приборов (МКП), внутри которого находятся гиростабилизированные платформы (ГСП) системы управления (СУ). Справа на МКП установлен блок звездных датчиков, имеющий открывающуюся в полете крышку. Слева размещен радиовысотомер-вертикаль. Над МКП размещена навигационная измерительная визуальная система, внешняя и внутренняя части которой установлены на специальном промежуточном иллюминаторе задней стенки кабины.