Смекни!
smekni.com

Античная программа построения наук (стр. 3 из 4)

Однако помимо техников, не отличавшихся от ремесленников, в античной культуре, как мы уже отмечали, действовали пусть и редкие фигуры ученых-техников (предтечи будущих инженеров и ученых-естественников). Евдокс, Архит, Архимед, Гиппарх, Птолемей, очевидно, не только хорошо понимали философские размышления о науке и опыте, мудрости и искусстве (технике), но и, несомненно, применяли некоторые из философских идей в своем творчестве. Ведь в той или иной мере и Платон, и Аристотель установили связь идей (сущностей) и вещей, а следовательно, науки и опыта. Другое дело, что, как правило, реализация этой связи в технике не фиксировалась.

Рассмотрим этот процесс несколько подробнее. Г.Дильс в ставшей уже классической работе "Античная техника" пишет: "Исходная величина, которую древние инженеры клали в основу при устройстве метательных машин – это калибр, т.е. диаметр канала, в котором двигаются упругие натянутые жилы, с помощью которых орудие заряжается (натяжение) и стреляет. ...инженеры признавали, по словам Филона, наилучшей найденную ими формулу для определения величины калибра К=1,13х100, т.е. в диаметре канала должно быть столько дактилей, сколько единиц получится, если извлечь кубический корень из веса каменного ядра (в аттических минах), помноженного на 100, и еще с добавкой десятой части всего полученного результата. И эта исходная мера должна быть пропорционально выдержана во всех частях метательной машины" [35, с. 26-27]. Перед нами типичный инженерный расчет, только он опирается не на знания естественных наук, а на знания, полученные в опыте, и знания математические (теорию пропорций и арифметику). Подобный расчет мог быть использован также и для изготовления метательных машин (он выступал бы тогда в роли конструктивной схемы, где указаны размеры деталей и элементов).

Отличие этого этапа формирования науки от шумеро-вавилонского принципиально: в греческой математической науке знание отношений, используемых техниками, заготовлялось, так сказать, впрок (не сознательно для целей техники, а в силу автономного развития математики). Теория пропорций предопределяла мышление техника, знакомясь с математикой, проецируя ее на природу и вещи, он невольно начинал мыслить элементы конструкции машины, как бы связанными этими математическими отношениями. Подобные отношения (не только в теории пропорций, но и в планиметрии, а позднее и в теории конических сечений) позволяли решать и такие задачи, где нужно было вычислять элементы, недоступные для непосредственных измерений (например, уже отмеченный известный случай прокладки водопровода Эвпалина).

Одно из необходимых условий решения таких задач – перепредставление в математической онтологии реального объекта. Если в шумеро-вавилонской математике чертежи как планы полей воспринимались писцами в виде уменьшенных реальных объектов, то в античной науке чертеж мыслится как бытие, существенно отличающееся от бытия вещей (реальных объектов). Платон, например, помещает геометрические чертежи между идеями и вещами в область "геометрического пространства". Аристотель тоже не считает геометрические чертежи (и числа) ни сущностями, ни вещами: он рассматривает их как мысленные конструкции, некоторые свойства, абстрагируемые от вещей. С этими свойствами оперируют, как если бы они были самостоятельными сущностями, и затем смотрят, какие следствия проистекают из этого [25, с. 56, 352-358].

Можно догадаться, что подобные философские соображения как раз и обеспечивали возможность перепредставления реальных объектов как объектов математических (т.е. возможность описания реальных объектов в математической онтологии).

"Техническая теория" в рамках античной науки

Переход от использования в технике отдельных научных знаний к построению своеобразной античной "технической науки" мы находим в исследованиях Архимеда. Но отдельные предпосылки этого процесса можно найти и в самой античной математике. Например, в "Началах" Евклида нетрудно заметить группировку теорем (положений), которая вполне схожа с группировкой технических знаний. (В технических теориях, как известно, описываются классы однородных идеальных объектов – колебательные контуры, кинематические цепи, тепловые и электрические машины и т.д.). Евклид объединяет математические знания, описывающие классы однородных объектов, в отдельные книги.

Именно в античной математике (в работах до Евклида и в его "Началах") была впервые применена и отработана сама процедура сведения и преобразования одних идеальных объектов (фигур, еще не описанных в теории) к другим идеальным объектам (фигурам, описанным в теории). В ходе таких преобразований получались знания отношений ("равно", "больше", "меньше", "подобно", "параллельно"). В дальнейшем, как известно, эти знания были использованы в фундаментальных науках и параметризованы, т.е. отнесены к связям параметров природных, реальных объектов. Наконец, именно в античной геометрии были отработаны две основные процедуры теоретического рассуждения: прямая – доказательство геометрических положений, и обратная – решение проблем. Эти две процедуры являются историческим эквивалентом современной теоретической постановки и решения в технических науках задач "синтеза – анализа".

Более явно отдельные элементы технического мышления могут быть прослежены в античной астрономии. Конечная прагматическая ориентация теоретической астрономии не вызывает сомнений (предсказание лунных и солнечных затмений, восхода и захода планет и луны, определение долготы и широты и т.п.). Но совсем не очевидно, что эта ориентация может быть сближена с технической ориентацией, ведь человек вроде бы непричастен к ходу небесных явлений. Тем не менее такое сближение возможно.

В определенном смысле все объекты античной астрономии могут быть отнесены к однородным объектам. На эту мысль наводит единообразная форма их моделей – геометрических изображений небесных сфер и эпициклов. Идеальные объекты, представленные в этих моделях, формируются точно так же, как идеальные объекты технических наук, т.е. складываются в ходе схематизации и онтологизации процедур сведения одних теоретически представленных небесных явлений к другим. (Первоначально эти явления описывались в родственных "фундаментальных теориях" – арифметике, геометрии, теории пропорций). Аналогично этому в античной теоретической астрономии, вероятно, впервые была отработана процедура получения отношений между параметрами изучаемого в теории реального объекта.

Первоначально исходные параметры геометрических моделей теоретической астрономии заимствовались непосредственно из таблиц, фиксирующих ступенчатые и зигзагообразные функции. Эти таблицы греческие астрономы получили от вавилонян [50]. Позднее греческие астрономы стали производить собственные измерения, ориентируясь уже на новые, "тригонометрические" модели, фиксирующие небесные явления, а также на требования, возникающие в процессе преобразования этих моделей (в Новое время эта процедура была перенесена Галилеем в механику и уже в XIX в. – из естествознания в технические науки).

Если небесные тела и их траектории может создать, сотворить только Бог (главным же образом они мыслятся как природные, космические явления), то строительство кораблей – всецело дело рук человека, искусного техника. С этой точки зрения крайне интересные случаи использования научных знаний в технике демонстрирует работа Архимеда "О плавающих телах". По сути, это – вариант "технической науки до технической техники", однако представленный в форме античной теории, из которой изгнано всякое упоминание об объектах техники (кораблях).

Действительно, работа построена по всем канонам античной науки: формулируется аксиома, на основе которой доказываются теоремы, при доказательстве последующих теорем используется знание предыдущих. В тексте работы не приведены эмпирические знания, описания наблюдений или опытов; идеальные объекты – идеальная жидкость и погружены в нее тела – не противопоставляются реальным жидкостям и телам. Вообще, если термины "жидкость" и "тело" не относить к реальным объектам, а связывать только с идеальными объектами и процедурами развертывания теории, то науку, которую построил Архимед, по способу описания нельзя отличить от математической теории "Начал" Евклида. Тем не менее можно показать, что Архимед при построении своей теории использовал эмпирические знания о реальных жидкостях и телах и сам его метод доказательства существенно отличается от математического. Рассмотрим оба эти момента подробнее.

Анализ формулировок некоторых теорем, содержащихся в этой работе, например: "...тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью" [10, с. 330], – позволяет утверждать, что они получены в ходе измерений при сопоставлении реальных объектов с общественно-фиксированными эталонами. Результаты сопоставления фиксировались затем в знаковых моделях (числах) или чертежах. В данном случае можно предположить, что осуществлялись два рода сопоставлений: взвешивание тел и жидкости и определение положения тел относительно поверхности жидкости (тело выступает над поверхностью, полностью погружено в жидкость, опускается "до самого низа" и т.д.).