Смекни!
smekni.com

Флот накануне и в период Первой мировой и Гражданской войн (стр. 2 из 2)

Во время заграничной командировки К.П.Боклевский познакомился с техническими новинками: двигателям Дизеля, турбиной Парсонса и водотрубным котлом Вита, внедрению которых на корабли флота он отдал немало сил. Именно по его проекту впервые в мире был построен теплоход с дизелем в качестве главного двигателя. Константин Петрович Боклевский стал первым деканом Кораблестроительного отделения (факультета) Политехнического института в Петербурге и пробыл в этой должности более двух десятилетий. Среди преподавателей и учащихся Кораблестроительного отделения того времени были замечательные ученые, впоследствии вошедшие в состав Академии наук, а именно: С.И.Дружинин, М.А.Шателен, В.Л.Поздюнин, П.Ф.Папкович. Факультет был знаменит и такими видными учеными, как И.Г.Бубнов, А.Н.Крылов, И.Н.Воскресенский, И.В.Мещерский.

В Политехническом институте Константин Петрович ввел новые курсы корабельной архитектуры и проектирования судов. Благодаря исследованиям в этой области знаний о корабле он стал известен как основоположник научной теории проектирования.

По инициативе К.П. Боклевского при Кораблестроительном отделении в 1909 г. организована подготовка инженеров-авиастроителей, для чего была создана специальная экспериментальная лаборатория, научным консультантом которой стал Н.Е. Жуковский.

Имя русского ученого Николая Егоровича Жуковского, члена-корреспондента Петербургской академии наук, создателя Аэродинамического института, автора многих трудов по теории авиации, механике твердого тела, астрономии, математике, прикладной механике, широко известно, но мало кто знает, что им выполнено 46 научных работ в области гидромеханики. В частности, им предложен метод математического рассмотрения задач струйной теории сопротивления жидкости. В области прикладных исследований Н.Е. Жуковский установил, что период колебания судна зависит не только от его собственной массы и формы, но и от массы воды, увлекаемой силами трения корпуса корабля. Заметным шагом вперед в изучении движителей стала вихревая теория винта Жуковского, позволявшая выявить распределение скоростей частиц воды у лопастей винта. Исследования Н.Е. Жуковского способствовали развитию теории турбин.

Насущная задача проектировщиков кораблей - отыскание зависимости скорости корабля от мощности его энергетической установки. Дело в том, что сопротивление воды нелинейно, и эта зависимость носит весьма сложный характер. Данной проблемой в России занимался В.И. Афанасьев (Афанасьев), который предложил формулу для определения мощности механизмов, что необходимо для сообщения кораблю заданной скорости. Этой формулой, получившей имя автора, в теории и практике кораблестроения пользовались вплоть до русско-японской войны.

С развитием минного и особенно торпедного оружия встала проблема защиты кораблей от этих грозных боевых средств. Впервые необходимость конструктивной защиты кораблей обосновал Э.Е. Гуляев. В течение двух десятилетий он занимался этой проблемой, связанной с действием взрыва в подводной части корабля, и разработал конкретные предложения. Его идея защиты кораблей от торпед послужила толчком для развития этого направления исследований во всех странах, строивших большие, линейные корабли. Заслуги Э.Е. Гуляева получили широкое международное признание, а ученые Великобритании избрали его членом Английского общества корабельных инженеров.

По просьбе одного из конструкторов первой боевой подводной лодки М.Н.Беклемишева инженер Балтийского завода Р.Г.Ниренберг занялся звуковой подводной связью и предложил мембранный прибор “акустического телеграфирования через воду”. На испытаниях дальность приема сигналов составляла порядка 8 км; после этого гидроакустические станции стали устанавливать на подводные лодки. Р.Г. Ниренберг создал и одну из первых станций с буксируемой антенной, служившей не только для связи, но и для обнаружения шумящих объектов на расстоянии 1-2 км.

Далее развитие гидроакустической аппаратуры пошло по линии создания шумопеленгаторных станций. Важной ступенью развития гидроакустики стала разработка конструкции первого в мире гидролокатора в 1916 г. Его авторы -уроженец Рязани, русский эмигрант во Франции К.В.Шиловский и французский физик П.Ланжевен (с 1924 г. иностранный член-корреспондент АН СССР). С помощью этого гидролокатора подводная лодка обнаруживалась на дистанции до 2 км, мина - на расстоянии до 100 м.

Широкую инженерную эрудицию проявил капитан Корпуса корабельных инженеров Л.М.Мациевич, окончивший, помимо Технологического института и Морской академии, курсы подводного плавания и курсы пилотов. На уровне идеи он первым обосновал целесообразность и возможность постройки корабля с аэропланом. Это было сделано в 1909 г., когда авиация в нашей стране еще только зарождалась. К глубокой печали, Мациевич погиб в авиакатастрофе, не успев реализовать свои явно незаурядные способности и выдвинутые идеи. А.Н.Крылов всячески поддерживал замыслы Л.М.Мациевича, но не смог добиться выделения корабля для переоборудования под авианосец.

К числу инженеров, смело использовавших научные познания, в том числе в интересах флота, относится В.Г. Шухов, член-корреспондент и почетный член АН СССР. Он впервые применил методы строительной механики корабля в речном судостроении, в частности, при разработке конструкции нефтеналивных барж. Основываясь на дифференциальных уравнениях для балки, лежащей на упругом основании, В.Г. Шухов получил решение, позволившее примерно в 2 раза увеличить длину речных барж, практически без изменения сечений основных несущих элементов. Баржи Шухова, имевшие длину до 150-170 м и нос ложкообразной формы, казались старым речникам диковинами. Между тем перевозка нефти на таких баржах обходилась в несколько раз дешевле, чем на эксплуатировавшихся малоемких баржах. В определенной мере шуховские баржи явились прототипом современных танкеров. В.Г. Шуховым разработан также ряд проектов по созданию морских мин заграждения, проработаны варианты использования их совместно с сетевыми заграждениями.

Общеизвестны гиперболоидные башни Шухова, ажурной и надежной конструкции. Однако перенос технических решений, пригодных для береговых условий, на корабли оказался неудачным. Шуховские конструкции на линейных кораблях типа “Андрей Первозванный” применялись в качестве мачты, но имели существенный недостаток - сильно вибрировали на ходу корабля и затрудняли использование установленных на них систем управления артиллерийской стрельбой. В конце концов, эти мачты были заменены на мачты традиционной конструкции.

Намного опередил свое время в развитии корабельных энергетических установок П.Д.Кузьминский. В конце прошлого века он создал турбину, работающую на парогазовой смеси, - прообраз газотурбинного двигателя. Русское техническое общество решило продемонстрировать этот двигатель на Всемирной выставке 1900 г. в Париже, но конструктор внезапно умер, и двигатель подготовить к показу не успели. Понадобилось полвека, чтобы газотурбинные двигатели получили широкое применение на кораблях. Первым их освоил также отечественный флот (большой противолодочный корабль “Комсомолец Украины” проекта 61 и др.).

Как известно, форма корабля выбирается при разработке теоретического чертежа и в процессе эксплуатации не меняется. К сожалению, в плавании состояние поверхности корпуса ухудшается из-за обрастания, а также коррозии. Сильное обрастание корпуса вызывает снижение скорости хода корабля. С древних времен старались предотвратить биологические повреждения подводной части судов. Единственным средством защиты от обрастания металлических судов стали лакокрасочные покрытия. Эффективность красок зависит от способности последних в течение длительного времени выделять в ламинарный слой воды определенное количество ядовитых веществ, но это входит в противоречие с современными требованиями по экологии.

Поэтому до сих пор остается актуальной задачей для биологов, химиков и кораблестроителей разработка таких методов и средств защиты, которые в наименьшей степени влияли бы на окружающую среду.