На первом этапе разработки морских баллистических ракет были решены две важнейшие задачи: реализация старта баллистической ракеты с подвижного и качающегося основания при постоянно меняющихся координатах точки старта и направления на цель, что дало возможность создать стратегические системы с принципиально новым качеством - подвижностью пусковой платформы; осуществление старта баллистической ракеты из подводного положения, что позволило придать морским стратегическим силам принципиально новое качество - повышенную скрытность и малую уязвимость.
Баллистические ракеты средней и межконтинентальной дальностей
Результаты, полученные при разработке отечественных баллистических ракет подводных лодок (БРПЛ) первого поколения, и сопоставление их с американскими достижениями привели к постановке вопроса о необходимости качественного скачка в развитии морских стратегических сил. Ясны были и основные направления их развития: многократное увеличение боекомплекта ракет на подводной лодке; снижение габаритов ракет, боеголовок, пусковых установок (ракетно-стартовых систем) и ракетных шахт; автоматизация процессов обслуживания ракет при хранении, предстартовой подготовке и залповой стрельбе; всемерное повышение тактико-технических характеристик и эксплуатационных качеств ракет и ракетных комплексов и т.п. Целью разработки новых комплексов было обеспечение развития второй эффективной составляющей стратегических ракетных сил страны - морских стратегических ядерных сил. Для достижения этой цели был необходим значительный прогресс в отечественном морском ракетостроении.
Основные характеристики ракетных комплексов подводных лодок с баллистическими ракетами
Наименование ракеты | Р-11ФМ | Р-13 | Р-21 | РСМ-25 | РСМ-40 | РСМ-50 | РСМ-52 | РСМ-54 |
Год принятия на вооружение | 1959 | 1960 | 1963 | 1968 | 1974 | 1977 | 1983 | 1986 |
Стартовый вес (т) | 5,47 | 13,74 | 19,63 | 14,3 | 33,3 | 35,3 | 90,1 | 40,3 |
Забрасываемая масса (кг) | 975 | 1597 | 1179 | 650 | 1100 | 1650 | 2550 | 2800 |
Длина х диаметр ракеты (м) | 10,3х0,88 | 11,8х1,3 | 14,2х1,3 | 9,06х1,5 | 13,0х1,8 | 14,6х1,8 | 16,0х2,4 | 14,8х1,9 |
Тип двигательной установки | ЖРД | ЖРД | ЖРД | ЖРД | ЖРД | ЖРД | РДТТ | ЖРД |
Количество ступеней | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
Тип системы управления | инерциальная | астроинерциальная | астрорадиоинерциальная | |||||
Тип головной части | МГЧ | МГЧ | МГЧ | МГЧ и кассетная ГЧ | МГЧ | МГЧиРГЧ | РГЧ | РГЧ |
Максимальная дальность стрельбы (км) | 150 | 600 | 1420 | 3000 | межконтинентальная | |||
Тип амортизации ракеты | рычажно-пружинная | резино-металлическая | амортизационная ракетно-стартовая система | резино-металлическая | ||||
Вид предстартовой подготовки | ручная | автоматизированная | ||||||
Положение ПЛ при пуске ракеты | надводное | подводное | подводное и надводное | |||||
Волнение моря при старте ракеты (баллы) | до 4-5 | до 5 | всепогодный пуск ракеты | |||||
Тип подводной лодки | АВ611, 629 | 629, 658 | 629А, 658М | 667А, 667АУ | 667Б, 667БД | 667БДР | 941 | 667БДРМ |
Количество ракет на ПЛ | 2,3 | 3 | 3 | 16 | 12,16 | 16 | 20 | 16 |
В 1961г. началась разработка твердотопливной морской баллистической ракеты. Однако состояние и возможности отечественного твердотопливного двигателестроения того времени, с одной стороны, а также требование улучшения тактико-технических характеристик ракетного оружия - с другой, не позволили в полной мере реализовать поставленные задачи: работы над морской ракетой были доведены до огневых стендовых испытаний ее двигателей и первого летно-конструкторского испытания макета ракеты с плавучего стенда для отработки способа пуска (на вооружение была принята только сухопутная ракета).
В начале работ над ракетами подводных лодок второго поколения были получены существенные результаты в области жидкостного двигателестроения, создания бортовых и корабельных систем управления, гироприборов, боезарядов, боеголовок. Среди множества проблем, которые тогда возникли, наиболее сложными были: достижение приемлемых габаритов ракеты при существенном росте тактико-технических характеристик, создание принципиально новых малогабаритных пусковых установок и качественно новых двигательных установок, достижение существенного прогресса в боевых блоках, бортовых и корабельных системах управления, автоматизация обслуживания, подготовки старта и залповой стрельбы боекомплекта ракет, реализация заводской заправки ракет топливом с ампулизацией баков, эксплуатация на флотах заправленных ракет, обеспечение всепогодности боевого применения и готовности к применению в любое время в любой точке Мирового океана и др. Все эти проблемы были решены при создании одноступенчатой (РСМ-25) и двухступенчатой (РСМ-40) ракет, которые стали основой для развития отечественного морского ракетного оружия.
Можно определенно утверждать, что в 1961-1962гг. было не только заложено новое поколение баллистических ракет подводных лодок, но и сформировано новое направление отечественного ракетостроения, созданы основы школы морского ракетостроения, во главе которой стоял В.П.Макеев. Оригинальность и системность технических решений, их многоплановость и способность к адаптации к изменяющимся требованиям, предельное внимание к проблемам безопасности и надежности, создание стройной системы наземной отработки и летных испытаний, постоянное совершенствование тактико-технических характеристик и эксплуатационных качеств, неизменная атмосфера доверительности и творческого сотрудничества в кооперации разработчиков, постоянные и плодотворные связи с научными организациями и высшими учебными заведениями отличали и отличают работу макеевской школы морского ракетостроения.
Среди решенных проблем и разработанных направлений следует отметить центральные, которые не только сформировали облик ракет второго поколения, но и определили на многие годы пути развития морских комплексов. Прежде всего, речь идет о пионерских конструктивно-компоновочных схемных решениях по ракете, связанных с практически полной ликвидацией объемов ракеты, не залитых топливом, с совмещением функций нескольких традиционных элементов в одном, внедрением нетрадиционных схем нагрузки конструкций.
Основным решением, кардинально сократившим габариты ракеты, было введение “утопленной схемы” двигательной установки - расположение двигателей в баках горючего или окислителя. Это предложение было выработано в КБ химического машиностроения, которым руководил А.М.Исаев, совместно с КБ В.П.Макеева. Оно привело к сокращению габаритов ракеты, ликвидации на ракете сухих отсеков для размещения двигательных установок, были созданы двигатели нового класса: без какого-либо обслуживания после изготовления, без каких-либо разъемных соединений и вместе с тем имеющие новый более высокий уровень энергомассовых характеристик. Такой же пример научно обоснованного и системного проектирования дали решения по цельносварным корпусам многоступенчатых ракет, по размещению рулевых приводов в компоненте топлива, использованию “вафельных” оболочек, созданию неразъемных переходников от стальных элементов двигателя к алюминиевому корпусу ракеты, а также решения вопросов качания камер сгорания, расположенных в компоненте топлива, разделения сваренных ступеней и их отделения без специальных механизмов. При разработке принципиально нового корпуса малогабаритной ракеты, выдерживающего повышенные перегрузки и избыточное наружное давление, были созданы предпосылки для проектирования новых ракетно-стартовых систем при совместной компоновке ракеты и пусковой установки.
Исходя из отмеченных ранее недостатков стартовых систем первого поколения, коренному пересмотру подверглась вся концепция проектирования ракетно-стартовых систем, а разработку собственно пусковых установок взяло на себя головное КБ В.П.Макеева. В основу дальнейших разработок были положены принципиально иные решения: вместо жесткого крепления ракеты относительно пусковой шахты она свободно подвешивалась в шахте на упругих связях с нелинейными силовыми характеристиками, при этом допускались колебания относительно шахты при эксплуатации; вместо передачи на ракету нагрузок в виде точечных сил через специальные устройства было предложено распределить эти силы по нескольким кольцевым зонам, расположенным на разных уровнях по длине ракеты, с использованием резинометаллических амортизаторов; вместо направления движения ракеты при погрузке и старте с помощью пары бугель-направляющих стали использовать для этих целей либо внутреннюю стенку шахты, либо непосредственно оболочку ракеты.
Суммарный эффект был весьма высоким. Кольцевой зазор и масса пусковой системы уменьшились на порядок, а ракета соответственно увеличилась почти до размеров самой пусковой шахты; огромные цистерны кольцевого зазора уменьшились во много раз, а заполнение кольцевого зазора перестало лимитировать время предстартовой подготовки, в результате чего сократились послестартовый разбаланс подводной лодки и его влияние на скорострельность.